mirror of
https://github.com/facebookresearch/faiss.git
synced 2025-06-03 21:54:02 +08:00
Summary: `-Wextra-semi` or `-Wextra-semi-stmt` If the code compiles, this is safe to land. Reviewed By: algoriddle Differential Revision: D52968923 fbshipit-source-id: 5754c0b17b46bc90d0f05d66bbfacb24fee5caae
342 lines
9.4 KiB
C++
342 lines
9.4 KiB
C++
/**
|
|
* Copyright (c) Facebook, Inc. and its affiliates.
|
|
*
|
|
* This source code is licensed under the MIT license found in the
|
|
* LICENSE file in the root directory of this source tree.
|
|
*/
|
|
|
|
// -*- c++ -*-
|
|
|
|
#include <faiss/IndexIVFSpectralHash.h>
|
|
|
|
#include <algorithm>
|
|
#include <cstdint>
|
|
#include <memory>
|
|
|
|
#include <faiss/IndexLSH.h>
|
|
#include <faiss/IndexPreTransform.h>
|
|
#include <faiss/VectorTransform.h>
|
|
#include <faiss/impl/AuxIndexStructures.h>
|
|
#include <faiss/impl/FaissAssert.h>
|
|
#include <faiss/utils/hamming.h>
|
|
#include <faiss/utils/utils.h>
|
|
|
|
namespace faiss {
|
|
|
|
IndexIVFSpectralHash::IndexIVFSpectralHash(
|
|
Index* quantizer,
|
|
size_t d,
|
|
size_t nlist,
|
|
int nbit,
|
|
float period)
|
|
: IndexIVF(quantizer, d, nlist, (nbit + 7) / 8, METRIC_L2),
|
|
nbit(nbit),
|
|
period(period) {
|
|
RandomRotationMatrix* rr = new RandomRotationMatrix(d, nbit);
|
|
rr->init(1234);
|
|
vt = rr;
|
|
is_trained = false;
|
|
by_residual = false;
|
|
}
|
|
|
|
IndexIVFSpectralHash::IndexIVFSpectralHash() : IndexIVF() {
|
|
by_residual = false;
|
|
}
|
|
|
|
IndexIVFSpectralHash::~IndexIVFSpectralHash() {
|
|
if (own_fields) {
|
|
delete vt;
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
|
|
float median(size_t n, float* x) {
|
|
std::sort(x, x + n);
|
|
if (n % 2 == 1) {
|
|
return x[n / 2];
|
|
} else {
|
|
return (x[n / 2 - 1] + x[n / 2]) / 2;
|
|
}
|
|
}
|
|
|
|
} // namespace
|
|
|
|
void IndexIVFSpectralHash::train_encoder(
|
|
idx_t n,
|
|
const float* x,
|
|
const idx_t* assign) {
|
|
if (!vt->is_trained) {
|
|
vt->train(n, x);
|
|
}
|
|
FAISS_THROW_IF_NOT(!by_residual);
|
|
|
|
if (threshold_type == Thresh_global) {
|
|
// nothing to do
|
|
return;
|
|
} else if (
|
|
threshold_type == Thresh_centroid ||
|
|
threshold_type == Thresh_centroid_half) {
|
|
// convert all centroids with vt
|
|
std::vector<float> centroids(nlist * d);
|
|
quantizer->reconstruct_n(0, nlist, centroids.data());
|
|
trained.resize(nlist * nbit);
|
|
vt->apply_noalloc(nlist, centroids.data(), trained.data());
|
|
if (threshold_type == Thresh_centroid_half) {
|
|
for (size_t i = 0; i < nlist * nbit; i++) {
|
|
trained[i] -= 0.25 * period;
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
// otherwise train medians
|
|
|
|
// assign
|
|
std::unique_ptr<idx_t[]> idx(new idx_t[n]);
|
|
quantizer->assign(n, x, idx.get());
|
|
|
|
std::vector<size_t> sizes(nlist + 1);
|
|
for (size_t i = 0; i < n; i++) {
|
|
FAISS_THROW_IF_NOT(idx[i] >= 0);
|
|
sizes[idx[i]]++;
|
|
}
|
|
|
|
size_t ofs = 0;
|
|
for (int j = 0; j < nlist; j++) {
|
|
size_t o0 = ofs;
|
|
ofs += sizes[j];
|
|
sizes[j] = o0;
|
|
}
|
|
|
|
// transform
|
|
std::unique_ptr<float[]> xt(vt->apply(n, x));
|
|
|
|
// transpose + reorder
|
|
std::unique_ptr<float[]> xo(new float[n * nbit]);
|
|
|
|
for (size_t i = 0; i < n; i++) {
|
|
size_t idest = sizes[idx[i]]++;
|
|
for (size_t j = 0; j < nbit; j++) {
|
|
xo[idest + n * j] = xt[i * nbit + j];
|
|
}
|
|
}
|
|
|
|
trained.resize(n * nbit);
|
|
// compute medians
|
|
#pragma omp for
|
|
for (int i = 0; i < nlist; i++) {
|
|
size_t i0 = i == 0 ? 0 : sizes[i - 1];
|
|
size_t i1 = sizes[i];
|
|
for (int j = 0; j < nbit; j++) {
|
|
float* xoi = xo.get() + i0 + n * j;
|
|
if (i0 == i1) { // nothing to train
|
|
trained[i * nbit + j] = 0.0;
|
|
} else if (i1 == i0 + 1) {
|
|
trained[i * nbit + j] = xoi[0];
|
|
} else {
|
|
trained[i * nbit + j] = median(i1 - i0, xoi);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
|
|
void binarize_with_freq(
|
|
size_t nbit,
|
|
float freq,
|
|
const float* x,
|
|
const float* c,
|
|
uint8_t* codes) {
|
|
memset(codes, 0, (nbit + 7) / 8);
|
|
for (size_t i = 0; i < nbit; i++) {
|
|
float xf = (x[i] - c[i]);
|
|
int64_t xi = int64_t(floor(xf * freq));
|
|
int64_t bit = xi & 1;
|
|
codes[i >> 3] |= bit << (i & 7);
|
|
}
|
|
}
|
|
|
|
} // namespace
|
|
|
|
void IndexIVFSpectralHash::encode_vectors(
|
|
idx_t n,
|
|
const float* x_in,
|
|
const idx_t* list_nos,
|
|
uint8_t* codes,
|
|
bool include_listnos) const {
|
|
FAISS_THROW_IF_NOT(is_trained);
|
|
FAISS_THROW_IF_NOT(!by_residual);
|
|
float freq = 2.0 / period;
|
|
size_t coarse_size = include_listnos ? coarse_code_size() : 0;
|
|
|
|
// transform with vt
|
|
std::unique_ptr<float[]> x(vt->apply(n, x_in));
|
|
|
|
std::vector<float> zero(nbit);
|
|
|
|
#pragma omp for
|
|
for (idx_t i = 0; i < n; i++) {
|
|
int64_t list_no = list_nos[i];
|
|
uint8_t* code = codes + i * (code_size + coarse_size);
|
|
|
|
if (list_no >= 0) {
|
|
if (coarse_size) {
|
|
encode_listno(list_no, code);
|
|
}
|
|
const float* c;
|
|
|
|
if (threshold_type == Thresh_global) {
|
|
c = zero.data();
|
|
} else {
|
|
c = trained.data() + list_no * nbit;
|
|
}
|
|
binarize_with_freq(
|
|
nbit, freq, x.get() + i * nbit, c, code + coarse_size);
|
|
} else {
|
|
memset(code, 0, code_size + coarse_size);
|
|
}
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
|
|
template <class HammingComputer>
|
|
struct IVFScanner : InvertedListScanner {
|
|
// copied from index structure
|
|
const IndexIVFSpectralHash* index;
|
|
size_t nbit;
|
|
|
|
float period, freq;
|
|
std::vector<float> q;
|
|
std::vector<float> zero;
|
|
std::vector<uint8_t> qcode;
|
|
HammingComputer hc;
|
|
|
|
IVFScanner(const IndexIVFSpectralHash* index, bool store_pairs)
|
|
: index(index),
|
|
nbit(index->nbit),
|
|
period(index->period),
|
|
freq(2.0 / index->period),
|
|
q(nbit),
|
|
zero(nbit),
|
|
qcode(index->code_size),
|
|
hc(qcode.data(), index->code_size) {
|
|
this->store_pairs = store_pairs;
|
|
this->code_size = index->code_size;
|
|
this->keep_max = is_similarity_metric(index->metric_type);
|
|
}
|
|
|
|
void set_query(const float* query) override {
|
|
FAISS_THROW_IF_NOT(query);
|
|
FAISS_THROW_IF_NOT(q.size() == nbit);
|
|
index->vt->apply_noalloc(1, query, q.data());
|
|
|
|
if (index->threshold_type == IndexIVFSpectralHash::Thresh_global) {
|
|
binarize_with_freq(nbit, freq, q.data(), zero.data(), qcode.data());
|
|
hc.set(qcode.data(), code_size);
|
|
}
|
|
}
|
|
|
|
void set_list(idx_t list_no, float /*coarse_dis*/) override {
|
|
this->list_no = list_no;
|
|
if (index->threshold_type != IndexIVFSpectralHash::Thresh_global) {
|
|
const float* c = index->trained.data() + list_no * nbit;
|
|
binarize_with_freq(nbit, freq, q.data(), c, qcode.data());
|
|
hc.set(qcode.data(), code_size);
|
|
}
|
|
}
|
|
|
|
float distance_to_code(const uint8_t* code) const final {
|
|
return hc.hamming(code);
|
|
}
|
|
|
|
size_t scan_codes(
|
|
size_t list_size,
|
|
const uint8_t* codes,
|
|
const idx_t* ids,
|
|
float* simi,
|
|
idx_t* idxi,
|
|
size_t k) const override {
|
|
size_t nup = 0;
|
|
for (size_t j = 0; j < list_size; j++) {
|
|
float dis = hc.hamming(codes);
|
|
|
|
if (dis < simi[0]) {
|
|
int64_t id = store_pairs ? lo_build(list_no, j) : ids[j];
|
|
maxheap_replace_top(k, simi, idxi, dis, id);
|
|
nup++;
|
|
}
|
|
codes += code_size;
|
|
}
|
|
return nup;
|
|
}
|
|
|
|
void scan_codes_range(
|
|
size_t list_size,
|
|
const uint8_t* codes,
|
|
const idx_t* ids,
|
|
float radius,
|
|
RangeQueryResult& res) const override {
|
|
for (size_t j = 0; j < list_size; j++) {
|
|
float dis = hc.hamming(codes);
|
|
if (dis < radius) {
|
|
int64_t id = store_pairs ? lo_build(list_no, j) : ids[j];
|
|
res.add(dis, id);
|
|
}
|
|
codes += code_size;
|
|
}
|
|
}
|
|
};
|
|
|
|
struct BuildScanner {
|
|
using T = InvertedListScanner*;
|
|
|
|
template <class HammingComputer>
|
|
static T f(const IndexIVFSpectralHash* index, bool store_pairs) {
|
|
return new IVFScanner<HammingComputer>(index, store_pairs);
|
|
}
|
|
};
|
|
|
|
} // anonymous namespace
|
|
|
|
InvertedListScanner* IndexIVFSpectralHash::get_InvertedListScanner(
|
|
bool store_pairs,
|
|
const IDSelector* sel) const {
|
|
FAISS_THROW_IF_NOT(!sel);
|
|
BuildScanner bs;
|
|
return dispatch_HammingComputer(code_size, bs, this, store_pairs);
|
|
}
|
|
|
|
void IndexIVFSpectralHash::replace_vt(VectorTransform* vt_in, bool own) {
|
|
FAISS_THROW_IF_NOT(vt_in->d_out == nbit);
|
|
FAISS_THROW_IF_NOT(vt_in->d_in == d);
|
|
if (own_fields) {
|
|
delete vt;
|
|
}
|
|
vt = vt_in;
|
|
threshold_type = Thresh_global;
|
|
is_trained = quantizer->is_trained && quantizer->ntotal == nlist &&
|
|
vt->is_trained;
|
|
own_fields = own;
|
|
}
|
|
|
|
/*
|
|
Check that the encoder is a single vector transform followed by a LSH
|
|
that just does thresholding.
|
|
If this is not the case, the linear transform + threhsolds of the IndexLSH
|
|
should be merged into the VectorTransform (which is feasible).
|
|
*/
|
|
|
|
void IndexIVFSpectralHash::replace_vt(IndexPreTransform* encoder, bool own) {
|
|
FAISS_THROW_IF_NOT(encoder->chain.size() == 1);
|
|
auto sub_index = dynamic_cast<IndexLSH*>(encoder->index);
|
|
FAISS_THROW_IF_NOT_MSG(sub_index, "final index should be LSH");
|
|
FAISS_THROW_IF_NOT(sub_index->nbits == nbit);
|
|
FAISS_THROW_IF_NOT(!sub_index->rotate_data);
|
|
FAISS_THROW_IF_NOT(!sub_index->train_thresholds);
|
|
replace_vt(encoder->chain[0], own);
|
|
}
|
|
|
|
} // namespace faiss
|