faiss/gpu/GpuIndexFlat.cu

598 lines
18 KiB
Plaintext

/**
* Copyright (c) 2015-present, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under the BSD+Patents license found in the
* LICENSE file in the root directory of this source tree.
*/
// Copyright 2004-present Facebook. All Rights Reserved.
#include "GpuIndexFlat.h"
#include "../IndexFlat.h"
#include "GpuResources.h"
#include "impl/FlatIndex.cuh"
#include "utils/CopyUtils.cuh"
#include "utils/DeviceUtils.h"
#include "utils/Float16.cuh"
#include "utils/StaticUtils.h"
#include <thrust/execution_policy.h>
#include <thrust/transform.h>
#include <limits>
namespace faiss { namespace gpu {
/// Default CPU search size for which we use paged copies
constexpr size_t kMinPageSize = (size_t) 256 * 1024 * 1024;
/// Size above which we page copies from the CPU to GPU (non-paged
/// memory usage)
constexpr size_t kNonPinnedPageSize = (size_t) 256 * 1024 * 1024;
GpuIndexFlat::GpuIndexFlat(GpuResources* resources,
const faiss::IndexFlat* index,
GpuIndexFlatConfig config) :
GpuIndex(resources, index->d, index->metric_type, config),
minPagedSize_(kMinPageSize),
config_(config),
data_(nullptr) {
verifySettings_();
// Flat index doesn't need training
this->is_trained = true;
copyFrom(index);
}
GpuIndexFlat::GpuIndexFlat(GpuResources* resources,
int dims,
faiss::MetricType metric,
GpuIndexFlatConfig config) :
GpuIndex(resources, dims, metric, config),
minPagedSize_(kMinPageSize),
config_(config),
data_(nullptr) {
verifySettings_();
// Flat index doesn't need training
this->is_trained = true;
// Construct index
DeviceScope scope(device_);
data_ = new FlatIndex(resources,
dims,
metric == faiss::METRIC_L2,
config_.useFloat16,
config_.useFloat16Accumulator,
config_.storeTransposed,
memorySpace_);
}
GpuIndexFlat::~GpuIndexFlat() {
delete data_;
}
void
GpuIndexFlat::setMinPagingSize(size_t size) {
minPagedSize_ = size;
}
size_t
GpuIndexFlat::getMinPagingSize() const {
return minPagedSize_;
}
void
GpuIndexFlat::copyFrom(const faiss::IndexFlat* index) {
DeviceScope scope(device_);
this->d = index->d;
this->metric_type = index->metric_type;
// GPU code has 32 bit indices
FAISS_THROW_IF_NOT_FMT(index->ntotal <=
(faiss::Index::idx_t) std::numeric_limits<int>::max(),
"GPU index only supports up to %zu indices; "
"attempting to copy CPU index with %zu parameters",
(size_t) std::numeric_limits<int>::max(),
(size_t) index->ntotal);
this->ntotal = index->ntotal;
delete data_;
data_ = new FlatIndex(resources_,
this->d,
index->metric_type == faiss::METRIC_L2,
config_.useFloat16,
config_.useFloat16Accumulator,
config_.storeTransposed,
memorySpace_);
// The index could be empty
if (index->ntotal > 0) {
data_->add(index->xb.data(),
index->ntotal,
resources_->getDefaultStream(device_));
}
}
void
GpuIndexFlat::copyTo(faiss::IndexFlat* index) const {
DeviceScope scope(device_);
index->d = this->d;
index->ntotal = this->ntotal;
index->metric_type = this->metric_type;
FAISS_ASSERT(data_->getSize() == this->ntotal);
index->xb.resize(this->ntotal * this->d);
auto stream = resources_->getDefaultStream(device_);
if (this->ntotal > 0) {
if (config_.useFloat16) {
auto vecFloat32 = data_->getVectorsFloat32Copy(stream);
fromDevice(vecFloat32, index->xb.data(), stream);
} else {
fromDevice(data_->getVectorsFloat32Ref(), index->xb.data(), stream);
}
}
}
size_t
GpuIndexFlat::getNumVecs() const {
return this->ntotal;
}
void
GpuIndexFlat::reset() {
DeviceScope scope(device_);
// Free the underlying memory
data_->reset();
this->ntotal = 0;
}
void
GpuIndexFlat::train(Index::idx_t n, const float* x) {
// nothing to do
}
void
GpuIndexFlat::add(Index::idx_t n, const float* x) {
DeviceScope scope(device_);
// To avoid multiple re-allocations, ensure we have enough storage
// available
data_->reserve(n, resources_->getDefaultStream(device_));
// If we're not operating in float16 mode, we don't need the input
// data to be resident on our device; we can add directly.
if (!config_.useFloat16) {
addImpl_(n, x, nullptr);
} else {
// Otherwise, perform the paging
GpuIndex::add(n, x);
}
}
void
GpuIndexFlat::addImpl_(Index::idx_t n,
const float* x,
const Index::idx_t* ids) {
// Device is already set in GpuIndex::addInternal_
// We do not support add_with_ids
FAISS_THROW_IF_NOT_MSG(!ids, "add_with_ids not supported");
FAISS_THROW_IF_NOT(n > 0);
// Due to GPU indexing in int32, we can't store more than this
// number of vectors on a GPU
FAISS_THROW_IF_NOT_FMT(this->ntotal + n <=
(faiss::Index::idx_t) std::numeric_limits<int>::max(),
"GPU index only supports up to %zu indices",
(size_t) std::numeric_limits<int>::max());
data_->add(x, n, resources_->getDefaultStream(device_));
this->ntotal += n;
}
struct IntToLong {
__device__ long operator()(int v) const { return (long) v; }
};
void
GpuIndexFlat::search(faiss::Index::idx_t n,
const float* x,
faiss::Index::idx_t k,
float* distances,
faiss::Index::idx_t* labels) const {
if (n == 0) {
return;
}
// For now, only support <= max int results
FAISS_THROW_IF_NOT_FMT(n <=
(faiss::Index::idx_t) std::numeric_limits<int>::max(),
"GPU index only supports up to %zu indices",
(size_t) std::numeric_limits<int>::max());
FAISS_THROW_IF_NOT_FMT(k <= 1024,
"GPU only supports k <= 1024 (requested %d)",
(int) k); // select limitation
DeviceScope scope(device_);
auto stream = resources_->getDefaultStream(device_);
// The input vectors may be too large for the GPU, but we still
// assume that the output distances and labels are not.
// Go ahead and make space for output distances and labels on the
// GPU.
// If we reach a point where all inputs are too big, we can add
// another level of tiling.
auto outDistances = toDevice<float, 2>(resources_,
device_,
distances,
stream,
{(int) n, (int) k});
// FlatIndex only supports an interface returning int indices
DeviceTensor<int, 2, true> outIntIndices(
resources_->getMemoryManagerCurrentDevice(),
{(int) n, (int) k}, stream);
bool usePaged = false;
if (getDeviceForAddress(x) == -1) {
// It is possible that the user is querying for a vector set size
// `x` that won't fit on the GPU.
// In this case, we will have to handle paging of the data from CPU
// -> GPU.
// Currently, we don't handle the case where the output data won't
// fit on the GPU (e.g., n * k is too large for the GPU memory).
size_t dataSize = (size_t) n * this->d * sizeof(float);
if (dataSize >= minPagedSize_) {
searchFromCpuPaged_(n, x, k,
outDistances.data(),
outIntIndices.data());
usePaged = true;
}
}
if (!usePaged) {
searchNonPaged_(n, x, k,
outDistances.data(),
outIntIndices.data());
}
// Convert and copy int indices out
auto outIndices = toDevice<faiss::Index::idx_t, 2>(resources_,
device_,
labels,
stream,
{(int) n, (int) k});
// Convert int to long
thrust::transform(thrust::cuda::par.on(stream),
outIntIndices.data(),
outIntIndices.end(),
outIndices.data(),
IntToLong());
// Copy back if necessary
fromDevice<float, 2>(outDistances, distances, stream);
fromDevice<faiss::Index::idx_t, 2>(outIndices, labels, stream);
}
void
GpuIndexFlat::searchImpl_(faiss::Index::idx_t n,
const float* x,
faiss::Index::idx_t k,
float* distances,
faiss::Index::idx_t* labels) const {
FAISS_ASSERT_MSG(false, "Should not be called");
}
void
GpuIndexFlat::searchNonPaged_(int n,
const float* x,
int k,
float* outDistancesData,
int* outIndicesData) const {
Tensor<float, 2, true> outDistances(outDistancesData, {n, k});
Tensor<int, 2, true> outIndices(outIndicesData, {n, k});
auto stream = resources_->getDefaultStream(device_);
// Make sure arguments are on the device we desire; use temporary
// memory allocations to move it if necessary
auto vecs = toDevice<float, 2>(resources_,
device_,
const_cast<float*>(x),
stream,
{n, (int) this->d});
data_->query(vecs, k, outDistances, outIndices, true);
}
void
GpuIndexFlat::searchFromCpuPaged_(int n,
const float* x,
int k,
float* outDistancesData,
int* outIndicesData) const {
Tensor<float, 2, true> outDistances(outDistancesData, {n, k});
Tensor<int, 2, true> outIndices(outIndicesData, {n, k});
// Is pinned memory available?
auto pinnedAlloc = resources_->getPinnedMemory();
int pageSizeInVecs =
(int) ((pinnedAlloc.second / 2) / (sizeof(float) * this->d));
if (!pinnedAlloc.first || pageSizeInVecs < 1) {
// Just page without overlapping copy with compute
int batchSize = utils::nextHighestPowerOf2(
(int) ((size_t) kNonPinnedPageSize /
(sizeof(float) * this->d)));
for (int cur = 0; cur < n; cur += batchSize) {
int num = std::min(batchSize, n - cur);
auto outDistancesSlice = outDistances.narrowOutermost(cur, num);
auto outIndicesSlice = outIndices.narrowOutermost(cur, num);
searchNonPaged_(num,
x + (size_t) cur * this->d,
k,
outDistancesSlice.data(),
outIndicesSlice.data());
}
return;
}
//
// Pinned memory is available, so we can overlap copy with compute.
// We use two pinned memory buffers, and triple-buffer the
// procedure:
//
// 1 CPU copy -> pinned
// 2 pinned copy -> GPU
// 3 GPU compute
//
// 1 2 3 1 2 3 ... (pinned buf A)
// 1 2 3 1 2 ... (pinned buf B)
// 1 2 3 1 ... (pinned buf A)
// time ->
//
auto defaultStream = resources_->getDefaultStream(device_);
auto copyStream = resources_->getAsyncCopyStream(device_);
FAISS_ASSERT((size_t) pageSizeInVecs * this->d <=
(size_t) std::numeric_limits<int>::max());
float* bufPinnedA = (float*) pinnedAlloc.first;
float* bufPinnedB = bufPinnedA + (size_t) pageSizeInVecs * this->d;
float* bufPinned[2] = {bufPinnedA, bufPinnedB};
// Reserve space on the GPU for the destination of the pinned buffer
// copy
DeviceTensor<float, 2, true> bufGpuA(
resources_->getMemoryManagerCurrentDevice(),
{(int) pageSizeInVecs, (int) this->d},
defaultStream);
DeviceTensor<float, 2, true> bufGpuB(
resources_->getMemoryManagerCurrentDevice(),
{(int) pageSizeInVecs, (int) this->d},
defaultStream);
DeviceTensor<float, 2, true>* bufGpus[2] = {&bufGpuA, &bufGpuB};
// Copy completion events for the pinned buffers
std::unique_ptr<CudaEvent> eventPinnedCopyDone[2];
// Execute completion events for the GPU buffers
std::unique_ptr<CudaEvent> eventGpuExecuteDone[2];
// All offsets are in terms of number of vectors; they remain within
// int bounds (as this function only handles max in vectors)
// Current start offset for buffer 1
int cur1 = 0;
int cur1BufIndex = 0;
// Current start offset for buffer 2
int cur2 = -1;
int cur2BufIndex = 0;
// Current start offset for buffer 3
int cur3 = -1;
int cur3BufIndex = 0;
while (cur3 < n) {
// Start async pinned -> GPU copy first (buf 2)
if (cur2 != -1 && cur2 < n) {
// Copy pinned to GPU
int numToCopy = std::min(pageSizeInVecs, n - cur2);
// Make sure any previous execution has completed before continuing
auto& eventPrev = eventGpuExecuteDone[cur2BufIndex];
if (eventPrev.get()) {
eventPrev->streamWaitOnEvent(copyStream);
}
CUDA_VERIFY(cudaMemcpyAsync(bufGpus[cur2BufIndex]->data(),
bufPinned[cur2BufIndex],
(size_t) numToCopy * this->d * sizeof(float),
cudaMemcpyHostToDevice,
copyStream));
// Mark a completion event in this stream
eventPinnedCopyDone[cur2BufIndex] =
std::move(std::unique_ptr<CudaEvent>(new CudaEvent(copyStream)));
// We pick up from here
cur3 = cur2;
cur2 += numToCopy;
cur2BufIndex = (cur2BufIndex == 0) ? 1 : 0;
}
if (cur3 != -1 && cur3 < n) {
// Process on GPU
int numToProcess = std::min(pageSizeInVecs, n - cur3);
// Make sure the previous copy has completed before continuing
auto& eventPrev = eventPinnedCopyDone[cur3BufIndex];
FAISS_ASSERT(eventPrev.get());
eventPrev->streamWaitOnEvent(defaultStream);
// Create tensor wrappers
DeviceTensor<float, 2, true> input(bufGpus[cur3BufIndex]->data(),
{numToProcess, this->d});
auto outDistancesSlice = outDistances.narrowOutermost(cur3, numToProcess);
auto outIndicesSlice = outIndices.narrowOutermost(cur3, numToProcess);
data_->query(input, k,
outDistancesSlice,
outIndicesSlice, true);
// Create completion event
eventGpuExecuteDone[cur3BufIndex] =
std::move(std::unique_ptr<CudaEvent>(new CudaEvent(defaultStream)));
// We pick up from here
cur3BufIndex = (cur3BufIndex == 0) ? 1 : 0;
cur3 += numToProcess;
}
if (cur1 < n) {
// Copy CPU mem to CPU pinned
int numToCopy = std::min(pageSizeInVecs, n - cur1);
// Make sure any previous copy has completed before continuing
auto& eventPrev = eventPinnedCopyDone[cur1BufIndex];
if (eventPrev.get()) {
eventPrev->cpuWaitOnEvent();
}
memcpy(bufPinned[cur1BufIndex],
x + (size_t) cur1 * this->d,
(size_t) numToCopy * this->d * sizeof(float));
// We pick up from here
cur2 = cur1;
cur1 += numToCopy;
cur1BufIndex = (cur1BufIndex == 0) ? 1 : 0;
}
}
}
void
GpuIndexFlat::reconstruct(faiss::Index::idx_t key,
float* out) const {
DeviceScope scope(device_);
FAISS_THROW_IF_NOT_MSG(key < this->ntotal, "index out of bounds");
auto stream = resources_->getDefaultStream(device_);
if (config_.useFloat16) {
auto vec = data_->getVectorsFloat32Copy(key, 1, stream);
fromDevice(vec.data(), out, this->d, stream);
} else {
auto vec = data_->getVectorsFloat32Ref()[key];
fromDevice(vec.data(), out, this->d, stream);
}
}
void
GpuIndexFlat::reconstruct_n(faiss::Index::idx_t i0,
faiss::Index::idx_t num,
float* out) const {
DeviceScope scope(device_);
FAISS_THROW_IF_NOT_MSG(i0 < this->ntotal, "index out of bounds");
FAISS_THROW_IF_NOT_MSG(i0 + num - 1 < this->ntotal, "num out of bounds");
auto stream = resources_->getDefaultStream(device_);
if (config_.useFloat16) {
auto vec = data_->getVectorsFloat32Copy(i0, num, stream);
fromDevice(vec.data(), out, num * this->d, stream);
} else {
auto vec = data_->getVectorsFloat32Ref()[i0];
fromDevice(vec.data(), out, this->d * num, stream);
}
}
void
GpuIndexFlat::verifySettings_() const {
// If we want Hgemm, ensure that it is supported on this device
if (config_.useFloat16Accumulator) {
#ifdef FAISS_USE_FLOAT16
FAISS_THROW_IF_NOT_MSG(config_.useFloat16,
"useFloat16Accumulator can only be enabled "
"with useFloat16");
FAISS_THROW_IF_NOT_FMT(getDeviceSupportsFloat16Math(config_.device),
"Device %d does not support Hgemm "
"(useFloat16Accumulator)",
config_.device);
#else
FAISS_THROW_IF_NOT_MSG(false, "not compiled with float16 support");
#endif
}
}
//
// GpuIndexFlatL2
//
GpuIndexFlatL2::GpuIndexFlatL2(GpuResources* resources,
faiss::IndexFlatL2* index,
GpuIndexFlatConfig config) :
GpuIndexFlat(resources, index, config) {
}
GpuIndexFlatL2::GpuIndexFlatL2(GpuResources* resources,
int dims,
GpuIndexFlatConfig config) :
GpuIndexFlat(resources, dims, faiss::METRIC_L2, config) {
}
void
GpuIndexFlatL2::copyFrom(faiss::IndexFlatL2* index) {
GpuIndexFlat::copyFrom(index);
}
void
GpuIndexFlatL2::copyTo(faiss::IndexFlatL2* index) {
GpuIndexFlat::copyTo(index);
}
//
// GpuIndexFlatIP
//
GpuIndexFlatIP::GpuIndexFlatIP(GpuResources* resources,
faiss::IndexFlatIP* index,
GpuIndexFlatConfig config) :
GpuIndexFlat(resources, index, config) {
}
GpuIndexFlatIP::GpuIndexFlatIP(GpuResources* resources,
int dims,
GpuIndexFlatConfig config) :
GpuIndexFlat(resources, dims, faiss::METRIC_INNER_PRODUCT, config) {
}
void
GpuIndexFlatIP::copyFrom(faiss::IndexFlatIP* index) {
GpuIndexFlat::copyFrom(index);
}
void
GpuIndexFlatIP::copyTo(faiss::IndexFlatIP* index) {
GpuIndexFlat::copyTo(index);
}
} } // namespace