258 lines
6.3 KiB
Plaintext
258 lines
6.3 KiB
Plaintext
/**
|
|
* Copyright (c) 2015-present, Facebook, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This source code is licensed under the BSD+Patents license found in the
|
|
* LICENSE file in the root directory of this source tree.
|
|
*/
|
|
|
|
// Copyright 2004-present Facebook. All Rights Reserved.
|
|
|
|
#include "GpuIndexIVF.h"
|
|
#include "../FaissAssert.h"
|
|
#include "../IndexFlat.h"
|
|
#include "../IndexIVF.h"
|
|
#include "GpuIndexFlat.h"
|
|
#include "utils/DeviceUtils.h"
|
|
#include "utils/Float16.cuh"
|
|
|
|
namespace faiss { namespace gpu {
|
|
|
|
GpuIndexIVF::GpuIndexIVF(GpuResources* resources,
|
|
int dims,
|
|
faiss::MetricType metric,
|
|
int nlist,
|
|
GpuIndexIVFConfig config) :
|
|
GpuIndex(resources, dims, metric, config),
|
|
ivfConfig_(std::move(config)),
|
|
nlist_(nlist),
|
|
nprobe_(1),
|
|
quantizer_(nullptr) {
|
|
#ifndef FAISS_USE_FLOAT16
|
|
FAISS_THROW_IF_NOT_MSG(!ivfConfig_.flatConfig.useFloat16CoarseQuantizer,
|
|
"float16 unsupported; need CUDA SDK >= 7.5");
|
|
#endif
|
|
|
|
init_();
|
|
}
|
|
|
|
void
|
|
GpuIndexIVF::init_() {
|
|
FAISS_ASSERT(nlist_ > 0);
|
|
|
|
// Spherical by default if the metric is inner_product
|
|
if (this->metric_type == faiss::METRIC_INNER_PRODUCT) {
|
|
this->cp.spherical = true;
|
|
}
|
|
|
|
// here we set a low # iterations because this is typically used
|
|
// for large clusterings
|
|
this->cp.niter = 10;
|
|
this->cp.verbose = this->verbose;
|
|
|
|
if (!quantizer_) {
|
|
// Construct an empty quantizer
|
|
GpuIndexFlatConfig config = ivfConfig_.flatConfig;
|
|
// FIXME: inherit our same device
|
|
config.device = device_;
|
|
|
|
if (this->metric_type == faiss::METRIC_L2) {
|
|
quantizer_ = new GpuIndexFlatL2(resources_, this->d, config);
|
|
} else if (this->metric_type == faiss::METRIC_INNER_PRODUCT) {
|
|
quantizer_ = new GpuIndexFlatIP(resources_, this->d, config);
|
|
} else {
|
|
// unknown metric type
|
|
FAISS_ASSERT_MSG(false, "unknown metric type");
|
|
}
|
|
}
|
|
}
|
|
|
|
GpuIndexIVF::~GpuIndexIVF() {
|
|
delete quantizer_;
|
|
}
|
|
|
|
GpuIndexFlat*
|
|
GpuIndexIVF::getQuantizer() {
|
|
return quantizer_;
|
|
}
|
|
|
|
void
|
|
GpuIndexIVF::copyFrom(const faiss::IndexIVF* index) {
|
|
DeviceScope scope(device_);
|
|
|
|
this->d = index->d;
|
|
this->metric_type = index->metric_type;
|
|
|
|
FAISS_ASSERT(index->nlist > 0);
|
|
FAISS_THROW_IF_NOT_FMT(index->nlist <=
|
|
(faiss::Index::idx_t) std::numeric_limits<int>::max(),
|
|
"GPU index only supports %zu inverted lists",
|
|
(size_t) std::numeric_limits<int>::max());
|
|
nlist_ = index->nlist;
|
|
nprobe_ = index->nprobe;
|
|
|
|
// The metric type may have changed as well, so we might have to
|
|
// change our quantizer
|
|
delete quantizer_;
|
|
quantizer_ = nullptr;
|
|
|
|
// Construct an empty quantizer
|
|
GpuIndexFlatConfig config = ivfConfig_.flatConfig;
|
|
// FIXME: inherit our same device
|
|
config.device = device_;
|
|
|
|
if (index->metric_type == faiss::METRIC_L2) {
|
|
// FIXME: 2 different float16 options?
|
|
quantizer_ = new GpuIndexFlatL2(resources_, this->d, config);
|
|
} else if (index->metric_type == faiss::METRIC_INNER_PRODUCT) {
|
|
// FIXME: 2 different float16 options?
|
|
quantizer_ = new GpuIndexFlatIP(resources_, this->d, config);
|
|
} else {
|
|
// unknown metric type
|
|
FAISS_ASSERT(false);
|
|
}
|
|
|
|
if (!index->is_trained) {
|
|
this->is_trained = false;
|
|
this->ntotal = 0;
|
|
return;
|
|
}
|
|
|
|
// Otherwise, we can populate ourselves from the other index
|
|
this->is_trained = true;
|
|
|
|
// ntotal can exceed max int, but the number of vectors per inverted
|
|
// list cannot exceed this. We check this in the subclasses.
|
|
this->ntotal = index->ntotal;
|
|
|
|
// Since we're trained, the quantizer must have data
|
|
FAISS_ASSERT(index->quantizer->ntotal > 0);
|
|
|
|
if (index->metric_type == faiss::METRIC_L2) {
|
|
auto q = dynamic_cast<faiss::IndexFlatL2*>(index->quantizer);
|
|
FAISS_ASSERT(q);
|
|
|
|
quantizer_->copyFrom(q);
|
|
} else if (index->metric_type == faiss::METRIC_INNER_PRODUCT) {
|
|
auto q = dynamic_cast<faiss::IndexFlatIP*>(index->quantizer);
|
|
FAISS_ASSERT(q);
|
|
|
|
quantizer_->copyFrom(q);
|
|
} else {
|
|
// unknown metric type
|
|
FAISS_ASSERT(false);
|
|
}
|
|
}
|
|
|
|
void
|
|
GpuIndexIVF::copyTo(faiss::IndexIVF* index) const {
|
|
DeviceScope scope(device_);
|
|
|
|
//
|
|
// Index information
|
|
//
|
|
index->ntotal = this->ntotal;
|
|
index->d = this->d;
|
|
index->metric_type = this->metric_type;
|
|
index->is_trained = this->is_trained;
|
|
|
|
//
|
|
// IndexIVF information
|
|
//
|
|
index->nlist = nlist_;
|
|
index->nprobe = nprobe_;
|
|
|
|
// Construct and copy the appropriate quantizer
|
|
faiss::IndexFlat* q = nullptr;
|
|
|
|
if (this->metric_type == faiss::METRIC_L2) {
|
|
q = new faiss::IndexFlatL2(this->d);
|
|
|
|
} else if (this->metric_type == faiss::METRIC_INNER_PRODUCT) {
|
|
q = new faiss::IndexFlatIP(this->d);
|
|
|
|
} else {
|
|
// unknown metric type
|
|
FAISS_ASSERT(false);
|
|
}
|
|
|
|
FAISS_ASSERT(quantizer_);
|
|
quantizer_->copyTo(q);
|
|
|
|
if (index->own_fields) {
|
|
delete index->quantizer;
|
|
}
|
|
|
|
index->quantizer = q;
|
|
index->quantizer_trains_alone = false;
|
|
index->own_fields = true;
|
|
index->cp = this->cp;
|
|
index->ids.clear();
|
|
index->ids.resize(nlist_);
|
|
index->maintain_direct_map = false;
|
|
index->direct_map.clear();
|
|
}
|
|
|
|
int
|
|
GpuIndexIVF::getNumLists() const {
|
|
return nlist_;
|
|
}
|
|
|
|
void
|
|
GpuIndexIVF::setNumProbes(int nprobe) {
|
|
FAISS_THROW_IF_NOT_FMT(nprobe > 0 && nprobe <= 1024,
|
|
"nprobe must be from 1 to 1024; passed %d",
|
|
nprobe);
|
|
nprobe_ = nprobe;
|
|
}
|
|
|
|
int
|
|
GpuIndexIVF::getNumProbes() const {
|
|
return nprobe_;
|
|
}
|
|
|
|
void
|
|
GpuIndexIVF::add(Index::idx_t n, const float* x) {
|
|
// FIXME: GPU-ize
|
|
std::vector<Index::idx_t> ids(n);
|
|
for (Index::idx_t i = 0; i < n; ++i) {
|
|
ids[i] = this->ntotal + i;
|
|
}
|
|
|
|
add_with_ids(n, x, ids.data());
|
|
}
|
|
|
|
void
|
|
GpuIndexIVF::trainQuantizer_(faiss::Index::idx_t n, const float* x) {
|
|
if (n == 0) {
|
|
// nothing to do
|
|
return;
|
|
}
|
|
|
|
if (quantizer_->is_trained && (quantizer_->ntotal == nlist_)) {
|
|
if (this->verbose) {
|
|
printf ("IVF quantizer does not need training.\n");
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
if (this->verbose) {
|
|
printf ("Training IVF quantizer on %ld vectors in %dD\n", n, d);
|
|
}
|
|
|
|
DeviceScope scope(device_);
|
|
|
|
// leverage the CPU-side k-means code, which works for the GPU
|
|
// flat index as well
|
|
quantizer_->reset();
|
|
Clustering clus(this->d, nlist_, this->cp);
|
|
clus.verbose = verbose;
|
|
clus.train(n, x, *quantizer_);
|
|
quantizer_->is_trained = true;
|
|
|
|
FAISS_ASSERT(quantizer_->ntotal == nlist_);
|
|
}
|
|
|
|
} } // namespace
|