697 lines
20 KiB
C++
697 lines
20 KiB
C++
/**
|
|
* Copyright (c) 2015-present, Facebook, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This source code is licensed under the BSD+Patents license found in the
|
|
* LICENSE file in the root directory of this source tree.
|
|
*/
|
|
|
|
// Copyright 2004-present Facebook. All Rights Reserved
|
|
// -*- c++ -*-
|
|
|
|
#include "IndexBinaryIVF.h"
|
|
|
|
#include <cstdio>
|
|
#include <memory>
|
|
|
|
#include "hamming.h"
|
|
#include "utils.h"
|
|
|
|
#include "AuxIndexStructures.h"
|
|
#include "FaissAssert.h"
|
|
#include "IndexFlat.h"
|
|
|
|
|
|
namespace faiss {
|
|
|
|
IndexBinaryIVF::IndexBinaryIVF(IndexBinary *quantizer, size_t d, size_t nlist)
|
|
: IndexBinary(d),
|
|
invlists(new ArrayInvertedLists(nlist, code_size)),
|
|
own_invlists(true),
|
|
nprobe(1),
|
|
max_codes(0),
|
|
maintain_direct_map(false),
|
|
quantizer(quantizer),
|
|
nlist(nlist),
|
|
own_fields(false),
|
|
clustering_index(nullptr)
|
|
{
|
|
FAISS_THROW_IF_NOT (d == quantizer->d);
|
|
is_trained = quantizer->is_trained && (quantizer->ntotal == nlist);
|
|
|
|
cp.niter = 10;
|
|
}
|
|
|
|
IndexBinaryIVF::IndexBinaryIVF()
|
|
: invlists(nullptr),
|
|
own_invlists(false),
|
|
nprobe(1),
|
|
max_codes(0),
|
|
maintain_direct_map(false),
|
|
quantizer(nullptr),
|
|
nlist(0),
|
|
own_fields(false),
|
|
clustering_index(nullptr)
|
|
{}
|
|
|
|
void IndexBinaryIVF::add(idx_t n, const uint8_t *x) {
|
|
add_with_ids(n, x, nullptr);
|
|
}
|
|
|
|
void IndexBinaryIVF::add_with_ids(idx_t n, const uint8_t *x, const long *xids) {
|
|
add_core(n, x, xids, nullptr);
|
|
}
|
|
|
|
void IndexBinaryIVF::add_core(idx_t n, const uint8_t *x, const long *xids,
|
|
const long *precomputed_idx) {
|
|
FAISS_THROW_IF_NOT(is_trained);
|
|
assert(invlists);
|
|
FAISS_THROW_IF_NOT_MSG(!(maintain_direct_map && xids),
|
|
"cannot have direct map and add with ids");
|
|
|
|
const long * idx;
|
|
|
|
std::unique_ptr<long[]> scoped_idx;
|
|
|
|
if (precomputed_idx) {
|
|
idx = precomputed_idx;
|
|
} else {
|
|
scoped_idx.reset(new long[n]);
|
|
quantizer->assign(n, x, scoped_idx.get());
|
|
idx = scoped_idx.get();
|
|
}
|
|
|
|
long n_add = 0;
|
|
for (size_t i = 0; i < n; i++) {
|
|
long id = xids ? xids[i] : ntotal + i;
|
|
long list_no = idx[i];
|
|
|
|
if (list_no < 0)
|
|
continue;
|
|
const uint8_t *xi = x + i * code_size;
|
|
size_t offset = invlists->add_entry(list_no, id, xi);
|
|
|
|
if (maintain_direct_map)
|
|
direct_map.push_back(list_no << 32 | offset);
|
|
n_add++;
|
|
}
|
|
if (verbose) {
|
|
printf("IndexBinaryIVF::add_with_ids: added %ld / %ld vectors\n",
|
|
n_add, n);
|
|
}
|
|
ntotal += n_add;
|
|
}
|
|
|
|
void IndexBinaryIVF::make_direct_map(bool new_maintain_direct_map) {
|
|
// nothing to do
|
|
if (new_maintain_direct_map == maintain_direct_map)
|
|
return;
|
|
|
|
if (new_maintain_direct_map) {
|
|
direct_map.resize(ntotal, -1);
|
|
for (size_t key = 0; key < nlist; key++) {
|
|
size_t list_size = invlists->list_size(key);
|
|
const idx_t *idlist = invlists->get_ids(key);
|
|
|
|
for (long ofs = 0; ofs < list_size; ofs++) {
|
|
FAISS_THROW_IF_NOT_MSG(0 <= idlist[ofs] && idlist[ofs] < ntotal,
|
|
"direct map supported only for seuquential ids");
|
|
direct_map[idlist[ofs]] = key << 32 | ofs;
|
|
}
|
|
}
|
|
} else {
|
|
direct_map.clear();
|
|
}
|
|
maintain_direct_map = new_maintain_direct_map;
|
|
}
|
|
|
|
void IndexBinaryIVF::search(idx_t n, const uint8_t *x, idx_t k,
|
|
int32_t *distances, idx_t *labels) const {
|
|
std::unique_ptr<idx_t[]> idx(new idx_t[n * nprobe]);
|
|
std::unique_ptr<int32_t[]> coarse_dis(new int32_t[n * nprobe]);
|
|
|
|
quantizer->search(n, x, nprobe, coarse_dis.get(), idx.get());
|
|
|
|
invlists->prefetch_lists(idx.get(), n * nprobe);
|
|
|
|
search_preassigned(n, x, k, idx.get(), coarse_dis.get(),
|
|
distances, labels, false);
|
|
}
|
|
|
|
void IndexBinaryIVF::reconstruct(idx_t key, uint8_t *recons) const {
|
|
FAISS_THROW_IF_NOT_MSG(direct_map.size() == ntotal,
|
|
"direct map is not initialized");
|
|
long list_no = direct_map[key] >> 32;
|
|
long offset = direct_map[key] & 0xffffffff;
|
|
reconstruct_from_offset(list_no, offset, recons);
|
|
}
|
|
|
|
void IndexBinaryIVF::reconstruct_n(idx_t i0, idx_t ni, uint8_t *recons) const {
|
|
FAISS_THROW_IF_NOT(ni == 0 || (i0 >= 0 && i0 + ni <= ntotal));
|
|
|
|
for (long list_no = 0; list_no < nlist; list_no++) {
|
|
size_t list_size = invlists->list_size(list_no);
|
|
const Index::idx_t *idlist = invlists->get_ids(list_no);
|
|
|
|
for (long offset = 0; offset < list_size; offset++) {
|
|
long id = idlist[offset];
|
|
if (!(id >= i0 && id < i0 + ni)) {
|
|
continue;
|
|
}
|
|
|
|
uint8_t *reconstructed = recons + (id - i0) * d;
|
|
reconstruct_from_offset(list_no, offset, reconstructed);
|
|
}
|
|
}
|
|
}
|
|
|
|
void IndexBinaryIVF::search_and_reconstruct(idx_t n, const uint8_t *x, idx_t k,
|
|
int32_t *distances, idx_t *labels,
|
|
uint8_t *recons) const {
|
|
std::unique_ptr<idx_t[]> idx(new long[n * nprobe]);
|
|
std::unique_ptr<int32_t[]> coarse_dis(new int32_t[n * nprobe]);
|
|
|
|
quantizer->search(n, x, nprobe, coarse_dis.get(), idx.get());
|
|
|
|
invlists->prefetch_lists(idx.get(), n * nprobe);
|
|
|
|
// search_preassigned() with `store_pairs` enabled to obtain the list_no
|
|
// and offset into `codes` for reconstruction
|
|
search_preassigned(n, x, k, idx.get(), coarse_dis.get(),
|
|
distances, labels, /* store_pairs */true);
|
|
for (idx_t i = 0; i < n; ++i) {
|
|
for (idx_t j = 0; j < k; ++j) {
|
|
idx_t ij = i * k + j;
|
|
idx_t key = labels[ij];
|
|
uint8_t *reconstructed = recons + ij * d;
|
|
if (key < 0) {
|
|
// Fill with NaNs
|
|
memset(reconstructed, -1, sizeof(*reconstructed) * d);
|
|
} else {
|
|
int list_no = key >> 32;
|
|
int offset = key & 0xffffffff;
|
|
|
|
// Update label to the actual id
|
|
labels[ij] = invlists->get_single_id(list_no, offset);
|
|
|
|
reconstruct_from_offset(list_no, offset, reconstructed);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void IndexBinaryIVF::reconstruct_from_offset(long list_no, long offset,
|
|
uint8_t *recons) const {
|
|
memcpy(recons, invlists->get_single_code(list_no, offset), code_size);
|
|
}
|
|
|
|
void IndexBinaryIVF::reset() {
|
|
direct_map.clear();
|
|
invlists->reset();
|
|
ntotal = 0;
|
|
}
|
|
|
|
long IndexBinaryIVF::remove_ids(const IDSelector& sel) {
|
|
FAISS_THROW_IF_NOT_MSG(!maintain_direct_map,
|
|
"direct map remove not implemented");
|
|
|
|
std::vector<long> toremove(nlist);
|
|
|
|
#pragma omp parallel for
|
|
for (long i = 0; i < nlist; i++) {
|
|
long l0 = invlists->list_size (i), l = l0, j = 0;
|
|
const idx_t *idsi = invlists->get_ids(i);
|
|
while (j < l) {
|
|
if (sel.is_member(idsi[j])) {
|
|
l--;
|
|
invlists->update_entry(
|
|
i, j,
|
|
invlists->get_single_id(i, l),
|
|
invlists->get_single_code(i, l));
|
|
} else {
|
|
j++;
|
|
}
|
|
}
|
|
toremove[i] = l0 - l;
|
|
}
|
|
// this will not run well in parallel on ondisk because of possible shrinks
|
|
long nremove = 0;
|
|
for (long i = 0; i < nlist; i++) {
|
|
if (toremove[i] > 0) {
|
|
nremove += toremove[i];
|
|
invlists->resize(
|
|
i, invlists->list_size(i) - toremove[i]);
|
|
}
|
|
}
|
|
ntotal -= nremove;
|
|
return nremove;
|
|
}
|
|
|
|
void IndexBinaryIVF::train(idx_t n, const uint8_t *x) {
|
|
if (verbose)
|
|
printf("Training level-1 quantizer\n");
|
|
|
|
train_q1(n, x, verbose);
|
|
|
|
is_trained = true;
|
|
}
|
|
|
|
double IndexBinaryIVF::imbalance_factor () const {
|
|
std::vector<int> hist(nlist);
|
|
|
|
for (int i = 0; i < nlist; i++) {
|
|
hist[i] = invlists->list_size(i);
|
|
}
|
|
|
|
return faiss::imbalance_factor(nlist, hist.data());
|
|
}
|
|
|
|
void IndexBinaryIVF::print_stats() const {
|
|
std::vector<int> sizes(40);
|
|
for (int i = 0; i < nlist; i++) {
|
|
for (int j = 0; j < sizes.size(); j++) {
|
|
if ((invlists->list_size(i) >> j) == 0) {
|
|
sizes[j]++;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
for (int i = 0; i < sizes.size(); i++) {
|
|
if (sizes[i]) {
|
|
printf("list size in < %d: %d instances\n", 1 << i, sizes[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
void IndexBinaryIVF::merge_from(IndexBinaryIVF &other, idx_t add_id) {
|
|
// minimal sanity checks
|
|
FAISS_THROW_IF_NOT(other.d == d);
|
|
FAISS_THROW_IF_NOT(other.nlist == nlist);
|
|
FAISS_THROW_IF_NOT(other.code_size == code_size);
|
|
FAISS_THROW_IF_NOT_MSG((!maintain_direct_map &&
|
|
!other.maintain_direct_map),
|
|
"direct map copy not implemented");
|
|
FAISS_THROW_IF_NOT_MSG(typeid (*this) == typeid (other),
|
|
"can only merge indexes of the same type");
|
|
|
|
invlists->merge_from (other.invlists, add_id);
|
|
|
|
ntotal += other.ntotal;
|
|
other.ntotal = 0;
|
|
}
|
|
|
|
void IndexBinaryIVF::replace_invlists(InvertedLists *il, bool own) {
|
|
FAISS_THROW_IF_NOT(il->nlist == nlist &&
|
|
il->code_size == code_size);
|
|
if (own_invlists) {
|
|
delete invlists;
|
|
}
|
|
invlists = il;
|
|
own_invlists = own;
|
|
}
|
|
|
|
|
|
void IndexBinaryIVF::train_q1(size_t n, const uint8_t *x, bool verbose) {
|
|
if (quantizer->is_trained && (quantizer->ntotal == nlist)) {
|
|
if (verbose)
|
|
printf("IVF quantizer does not need training.\n");
|
|
} else {
|
|
if (verbose)
|
|
printf("Training level-1 quantizer on %ld vectors in %dD\n", n, d);
|
|
|
|
Clustering clus(d, nlist, cp);
|
|
quantizer->reset();
|
|
|
|
std::unique_ptr<float[]> x_f(new float[n * d]);
|
|
binary_to_real(n * d, x, x_f.get());
|
|
|
|
IndexFlatL2 index_tmp(d);
|
|
|
|
if (clustering_index && verbose) {
|
|
printf("using clustering_index of dimension %d to do the clustering\n",
|
|
clustering_index->d);
|
|
}
|
|
|
|
clus.train(n, x_f.get(), clustering_index ? *clustering_index : index_tmp);
|
|
|
|
std::unique_ptr<uint8_t[]> x_b(new uint8_t[clus.k * code_size]);
|
|
real_to_binary(d * clus.k, clus.centroids.data(), x_b.get());
|
|
|
|
quantizer->add(clus.k, x_b.get());
|
|
quantizer->is_trained = true;
|
|
}
|
|
}
|
|
|
|
|
|
namespace {
|
|
|
|
using idx_t = Index::idx_t;
|
|
|
|
|
|
template<class HammingComputer, bool store_pairs>
|
|
struct IVFBinaryScannerL2: BinaryInvertedListScanner {
|
|
|
|
HammingComputer hc;
|
|
size_t code_size;
|
|
|
|
IVFBinaryScannerL2 (size_t code_size): code_size (code_size)
|
|
{}
|
|
|
|
void set_query (const uint8_t *query_vector) override {
|
|
hc.set (query_vector, code_size);
|
|
}
|
|
|
|
idx_t list_no;
|
|
void set_list (idx_t list_no, uint8_t /* coarse_dis */) override {
|
|
this->list_no = list_no;
|
|
}
|
|
|
|
uint32_t distance_to_code (const uint8_t *code) const override {
|
|
return hc.hamming (code);
|
|
}
|
|
|
|
size_t scan_codes (size_t n,
|
|
const uint8_t *codes,
|
|
const idx_t *ids,
|
|
int32_t *simi, idx_t *idxi,
|
|
size_t k) const override
|
|
{
|
|
using C = CMax<int32_t, idx_t>;
|
|
|
|
size_t nup = 0;
|
|
for (size_t j = 0; j < n; j++) {
|
|
uint32_t dis = hc.hamming (codes);
|
|
if (dis < simi[0]) {
|
|
heap_pop<C> (k, simi, idxi);
|
|
long id = store_pairs ? (list_no << 32 | j) : ids[j];
|
|
heap_push<C> (k, simi, idxi, dis, id);
|
|
nup++;
|
|
}
|
|
codes += code_size;
|
|
}
|
|
return nup;
|
|
}
|
|
|
|
|
|
};
|
|
|
|
|
|
template <bool store_pairs>
|
|
BinaryInvertedListScanner *select_IVFBinaryScannerL2 (size_t code_size) {
|
|
|
|
switch (code_size) {
|
|
#define HANDLE_CS(cs) \
|
|
case cs: \
|
|
return new IVFBinaryScannerL2<HammingComputer ## cs, store_pairs> (cs);
|
|
HANDLE_CS(4);
|
|
HANDLE_CS(8);
|
|
HANDLE_CS(16);
|
|
HANDLE_CS(20);
|
|
HANDLE_CS(32);
|
|
HANDLE_CS(64);
|
|
#undef HANDLE_CS
|
|
default:
|
|
if (code_size % 8 == 0) {
|
|
return new IVFBinaryScannerL2<HammingComputerM8,
|
|
store_pairs> (code_size);
|
|
} else if (code_size % 4 == 0) {
|
|
return new IVFBinaryScannerL2<HammingComputerM4,
|
|
store_pairs> (code_size);
|
|
} else {
|
|
return new IVFBinaryScannerL2<HammingComputerDefault,
|
|
store_pairs> (code_size);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void search_knn_hamming_heap(const IndexBinaryIVF& ivf,
|
|
size_t n,
|
|
const uint8_t *x,
|
|
idx_t k,
|
|
const idx_t *keys,
|
|
const int32_t * coarse_dis,
|
|
int32_t *distances, idx_t *labels,
|
|
bool store_pairs,
|
|
const IVFSearchParameters *params)
|
|
{
|
|
long nprobe = params ? params->nprobe : ivf.nprobe;
|
|
long max_codes = params ? params->max_codes : ivf.max_codes;
|
|
MetricType metric_type = ivf.metric_type;
|
|
|
|
// almost verbatim copy from IndexIVF::search_preassigned
|
|
|
|
size_t nlistv = 0, ndis = 0, nheap = 0;
|
|
using HeapForIP = CMin<int32_t, idx_t>;
|
|
using HeapForL2 = CMax<int32_t, idx_t>;
|
|
|
|
#pragma omp parallel if(n > 1) reduction(+: nlistv, ndis, nheap)
|
|
{
|
|
std::unique_ptr<BinaryInvertedListScanner> scanner
|
|
(ivf.get_InvertedListScanner (store_pairs));
|
|
|
|
#pragma omp for
|
|
for (size_t i = 0; i < n; i++) {
|
|
const uint8_t *xi = x + i * ivf.code_size;
|
|
scanner->set_query(xi);
|
|
|
|
const long * keysi = keys + i * nprobe;
|
|
int32_t * simi = distances + k * i;
|
|
long * idxi = labels + k * i;
|
|
|
|
if (metric_type == METRIC_INNER_PRODUCT) {
|
|
heap_heapify<HeapForIP> (k, simi, idxi);
|
|
} else {
|
|
heap_heapify<HeapForL2> (k, simi, idxi);
|
|
}
|
|
|
|
size_t nscan = 0;
|
|
|
|
for (size_t ik = 0; ik < nprobe; ik++) {
|
|
long key = keysi[ik]; /* select the list */
|
|
if (key < 0) {
|
|
// not enough centroids for multiprobe
|
|
continue;
|
|
}
|
|
FAISS_THROW_IF_NOT_FMT
|
|
(key < (long) ivf.nlist,
|
|
"Invalid key=%ld at ik=%ld nlist=%ld\n",
|
|
key, ik, ivf.nlist);
|
|
|
|
scanner->set_list (key, coarse_dis[i * nprobe + ik]);
|
|
|
|
nlistv++;
|
|
|
|
size_t list_size = ivf.invlists->list_size(key);
|
|
InvertedLists::ScopedCodes scodes (ivf.invlists, key);
|
|
const Index::idx_t * ids = store_pairs ? nullptr :
|
|
ivf.invlists->get_ids (key);
|
|
|
|
nheap += scanner->scan_codes (list_size, scodes.get(),
|
|
ids, simi, idxi, k);
|
|
|
|
if (ids) {
|
|
ivf.invlists->release_ids (ids);
|
|
}
|
|
|
|
nscan += list_size;
|
|
if (max_codes && nscan >= max_codes)
|
|
break;
|
|
}
|
|
|
|
ndis += nscan;
|
|
if (metric_type == METRIC_INNER_PRODUCT) {
|
|
heap_reorder<HeapForIP> (k, simi, idxi);
|
|
} else {
|
|
heap_reorder<HeapForL2> (k, simi, idxi);
|
|
}
|
|
|
|
} // parallel for
|
|
} // parallel
|
|
|
|
indexIVF_stats.nq += n;
|
|
indexIVF_stats.nlist += nlistv;
|
|
indexIVF_stats.ndis += ndis;
|
|
indexIVF_stats.nheap_updates += nheap;
|
|
|
|
}
|
|
|
|
template<class HammingComputer, bool store_pairs>
|
|
void search_knn_hamming_count(const IndexBinaryIVF& ivf,
|
|
size_t nx,
|
|
const uint8_t *x,
|
|
const long *keys,
|
|
int k,
|
|
int32_t *distances,
|
|
long *labels,
|
|
const IVFSearchParameters *params) {
|
|
const int nBuckets = ivf.d + 1;
|
|
std::vector<int> all_counters(nx * nBuckets, 0);
|
|
std::unique_ptr<long[]> all_ids_per_dis(new long[nx * nBuckets * k]);
|
|
|
|
long nprobe = params ? params->nprobe : ivf.nprobe;
|
|
long max_codes = params ? params->max_codes : ivf.max_codes;
|
|
|
|
std::vector<HCounterState<HammingComputer>> cs;
|
|
for (size_t i = 0; i < nx; ++i) {
|
|
cs.push_back(HCounterState<HammingComputer>(
|
|
all_counters.data() + i * nBuckets,
|
|
all_ids_per_dis.get() + i * nBuckets * k,
|
|
x + i * ivf.code_size,
|
|
ivf.d,
|
|
k
|
|
));
|
|
}
|
|
|
|
size_t nlistv = 0, ndis = 0;
|
|
|
|
#pragma omp parallel for reduction(+: nlistv, ndis)
|
|
for (size_t i = 0; i < nx; i++) {
|
|
const long * keysi = keys + i * nprobe;
|
|
HCounterState<HammingComputer>& csi = cs[i];
|
|
|
|
size_t nscan = 0;
|
|
|
|
for (size_t ik = 0; ik < nprobe; ik++) {
|
|
long key = keysi[ik]; /* select the list */
|
|
if (key < 0) {
|
|
// not enough centroids for multiprobe
|
|
continue;
|
|
}
|
|
FAISS_THROW_IF_NOT_FMT (
|
|
key < (long) ivf.nlist,
|
|
"Invalid key=%ld at ik=%ld nlist=%ld\n",
|
|
key, ik, ivf.nlist);
|
|
|
|
nlistv++;
|
|
size_t list_size = ivf.invlists->list_size(key);
|
|
InvertedLists::ScopedCodes scodes (ivf.invlists, key);
|
|
const uint8_t *list_vecs = scodes.get();
|
|
const Index::idx_t *ids = store_pairs
|
|
? nullptr
|
|
: ivf.invlists->get_ids(key);
|
|
|
|
for (size_t j = 0; j < list_size; j++) {
|
|
const uint8_t * yj = list_vecs + ivf.code_size * j;
|
|
|
|
long id = store_pairs ? (key << 32 | j) : ids[j];
|
|
csi.update_counter(yj, id);
|
|
}
|
|
if (ids)
|
|
ivf.invlists->release_ids (ids);
|
|
|
|
nscan += list_size;
|
|
if (max_codes && nscan >= max_codes)
|
|
break;
|
|
}
|
|
ndis += nscan;
|
|
|
|
int nres = 0;
|
|
for (int b = 0; b < nBuckets && nres < k; b++) {
|
|
for (int l = 0; l < csi.counters[b] && nres < k; l++) {
|
|
labels[i * k + nres] = csi.ids_per_dis[b * k + l];
|
|
distances[i * k + nres] = b;
|
|
nres++;
|
|
}
|
|
}
|
|
while (nres < k) {
|
|
labels[i * k + nres] = -1;
|
|
distances[i * k + nres] = std::numeric_limits<int32_t>::max();
|
|
++nres;
|
|
}
|
|
}
|
|
|
|
indexIVF_stats.nq += nx;
|
|
indexIVF_stats.nlist += nlistv;
|
|
indexIVF_stats.ndis += ndis;
|
|
}
|
|
|
|
|
|
|
|
template<bool store_pairs>
|
|
void search_knn_hamming_count_1 (
|
|
const IndexBinaryIVF& ivf,
|
|
size_t nx,
|
|
const uint8_t *x,
|
|
const long *keys,
|
|
int k,
|
|
int32_t *distances,
|
|
long *labels,
|
|
const IVFSearchParameters *params) {
|
|
switch (ivf.code_size) {
|
|
#define HANDLE_CS(cs) \
|
|
case cs: \
|
|
search_knn_hamming_count<HammingComputer ## cs, store_pairs>( \
|
|
ivf, nx, x, keys, k, distances, labels, params); \
|
|
break;
|
|
HANDLE_CS(4);
|
|
HANDLE_CS(8);
|
|
HANDLE_CS(16);
|
|
HANDLE_CS(20);
|
|
HANDLE_CS(32);
|
|
HANDLE_CS(64);
|
|
#undef HANDLE_CS
|
|
default:
|
|
if (ivf.code_size % 8 == 0) {
|
|
search_knn_hamming_count<HammingComputerM8, store_pairs>
|
|
(ivf, nx, x, keys, k, distances, labels, params);
|
|
} else if (ivf.code_size % 4 == 0) {
|
|
search_knn_hamming_count<HammingComputerM4, store_pairs>
|
|
(ivf, nx, x, keys, k, distances, labels, params);
|
|
} else {
|
|
search_knn_hamming_count<HammingComputerDefault, store_pairs>
|
|
(ivf, nx, x, keys, k, distances, labels, params);
|
|
}
|
|
break;
|
|
}
|
|
|
|
}
|
|
|
|
} // namespace
|
|
|
|
BinaryInvertedListScanner *IndexBinaryIVF::get_InvertedListScanner
|
|
(bool store_pairs) const
|
|
{
|
|
if (store_pairs) {
|
|
return select_IVFBinaryScannerL2<true> (code_size);
|
|
} else {
|
|
return select_IVFBinaryScannerL2<false> (code_size);
|
|
}
|
|
}
|
|
|
|
void IndexBinaryIVF::search_preassigned(idx_t n, const uint8_t *x, idx_t k,
|
|
const idx_t *idx,
|
|
const int32_t * coarse_dis,
|
|
int32_t *distances, idx_t *labels,
|
|
bool store_pairs,
|
|
const IVFSearchParameters *params
|
|
) const {
|
|
|
|
if (use_heap) {
|
|
search_knn_hamming_heap (*this, n, x, k, idx, coarse_dis,
|
|
distances, labels, store_pairs,
|
|
params);
|
|
} else {
|
|
if (store_pairs) {
|
|
search_knn_hamming_count_1<true>
|
|
(*this, n, x, idx, k, distances, labels, params);
|
|
} else {
|
|
search_knn_hamming_count_1<false>
|
|
(*this, n, x, idx, k, distances, labels, params);
|
|
}
|
|
}
|
|
}
|
|
|
|
IndexBinaryIVF::~IndexBinaryIVF() {
|
|
if (own_invlists) {
|
|
delete invlists;
|
|
}
|
|
|
|
if (own_fields) {
|
|
delete quantizer;
|
|
}
|
|
}
|
|
|
|
|
|
} // namespace faiss
|