1307 lines
43 KiB
Python
1307 lines
43 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
#
|
|
# This source code is licensed under the MIT license found in the
|
|
# LICENSE file in the root directory of this source tree.
|
|
|
|
import numpy as np
|
|
|
|
import faiss
|
|
import unittest
|
|
|
|
from faiss.contrib import datasets
|
|
from faiss.contrib.inspect_tools import get_additive_quantizer_codebooks
|
|
|
|
###########################################################
|
|
# Reference implementation of encoding with beam search
|
|
###########################################################
|
|
|
|
faiss.omp_set_num_threads(4)
|
|
|
|
|
|
def pairwise_distances(a, b):
|
|
anorms = (a ** 2).sum(1)
|
|
bnorms = (b ** 2).sum(1)
|
|
return anorms.reshape(-1, 1) + bnorms - 2 * a @ b.T
|
|
|
|
|
|
def beam_search_encode_step_ref(cent, residuals, codes, L):
|
|
""" Reference beam search implementation
|
|
encodes a residual table.
|
|
"""
|
|
K, d = cent.shape
|
|
n, beam_size, d2 = residuals.shape
|
|
assert d == d2
|
|
n2, beam_size_2, m = codes.shape
|
|
assert n2 == n and beam_size_2 == beam_size
|
|
|
|
# compute all possible new residuals
|
|
cent_distances = pairwise_distances(residuals.reshape(n * beam_size, d), cent)
|
|
cent_distances = cent_distances.reshape(n, beam_size, K)
|
|
|
|
# TODO write in vector form
|
|
|
|
if beam_size * K <= L:
|
|
# then keep all the results
|
|
new_beam_size = beam_size * K
|
|
new_codes = np.zeros((n, beam_size, K, m + 1), dtype=int)
|
|
new_residuals = np.zeros((n, beam_size, K, d), dtype='float32')
|
|
for i in range(n):
|
|
new_codes[i, :, :, :-1] = codes[i]
|
|
new_codes[i, :, :, -1] = np.arange(K)
|
|
new_residuals[i] = residuals[i].reshape(1, d) - cent.reshape(K, d)
|
|
new_codes = new_codes.reshape(n, new_beam_size, m + 1)
|
|
new_residuals = new_residuals.reshape(n, new_beam_size, d)
|
|
new_distances = cent_distances.reshape(n, new_beam_size)
|
|
else:
|
|
# keep top-L results
|
|
new_beam_size = L
|
|
new_codes = np.zeros((n, L, m + 1), dtype=int)
|
|
new_residuals = np.zeros((n, L, d), dtype='float32')
|
|
new_distances = np.zeros((n, L), dtype='float32')
|
|
for i in range(n):
|
|
cd = cent_distances[i].ravel()
|
|
jl = np.argsort(cd)[:L] # TODO argpartition
|
|
js = jl // K # input beam index
|
|
ls = jl % K # centroid index
|
|
new_codes[i, :, :-1] = codes[i, js, :]
|
|
new_codes[i, :, -1] = ls
|
|
new_residuals[i, :, :] = residuals[i, js, :] - cent[ls, :]
|
|
new_distances[i, :] = cd[jl]
|
|
|
|
return new_codes, new_residuals, new_distances
|
|
|
|
|
|
def beam_search_encode_step(cent, residuals, codes, L, assign_index=None):
|
|
""" Wrapper of the C++ function with the same interface """
|
|
K, d = cent.shape
|
|
n, beam_size, d2 = residuals.shape
|
|
assert d == d2
|
|
n2, beam_size_2, m = codes.shape
|
|
assert n2 == n and beam_size_2 == beam_size
|
|
|
|
assert L <= beam_size * K
|
|
|
|
new_codes = np.zeros((n, L, m + 1), dtype='int32')
|
|
new_residuals = np.zeros((n, L, d), dtype='float32')
|
|
new_distances = np.zeros((n, L), dtype='float32')
|
|
|
|
sp = faiss.swig_ptr
|
|
codes = np.ascontiguousarray(codes, dtype='int32')
|
|
faiss.beam_search_encode_step(
|
|
d, K, sp(cent), n, beam_size, sp(residuals),
|
|
m, sp(codes), L, sp(new_codes), sp(new_residuals), sp(new_distances),
|
|
assign_index
|
|
)
|
|
|
|
return new_codes, new_residuals, new_distances
|
|
|
|
|
|
def beam_search_encoding_ref(centroids, x, L):
|
|
"""
|
|
Perform encoding of vectors x with a beam search of size L
|
|
"""
|
|
n, d = x.shape
|
|
beam_size = 1
|
|
codes = np.zeros((n, beam_size, 0), dtype=int)
|
|
residuals = x.reshape((n, beam_size, d))
|
|
distances = (x ** 2).sum(1).reshape(n, beam_size)
|
|
|
|
for cent in centroids:
|
|
codes, residuals, distances = beam_search_encode_step_ref(
|
|
cent, residuals, codes, L)
|
|
|
|
return (codes, residuals, distances)
|
|
|
|
|
|
###########################################################
|
|
# Unittests for basic routines
|
|
###########################################################
|
|
|
|
|
|
class TestBeamSearch(unittest.TestCase):
|
|
|
|
def do_test(self, K=70, L=10, use_assign_index=False):
|
|
""" compare C++ beam search with reference python implementation """
|
|
d = 32
|
|
n = 500
|
|
L = 10 # beam size
|
|
|
|
rs = np.random.RandomState(123)
|
|
x = rs.rand(n, d).astype('float32')
|
|
|
|
cent = rs.rand(K, d).astype('float32')
|
|
|
|
# first quant step --> input beam size is 1
|
|
codes = np.zeros((n, 1, 0), dtype=int)
|
|
residuals = x.reshape(n, 1, d)
|
|
|
|
assign_index = faiss.IndexFlatL2(d) if use_assign_index else None
|
|
|
|
ref_codes, ref_residuals, ref_distances = beam_search_encode_step_ref(
|
|
cent, residuals, codes, L
|
|
)
|
|
|
|
new_codes, new_residuals, new_distances = beam_search_encode_step(
|
|
cent, residuals, codes, L, assign_index
|
|
)
|
|
|
|
np.testing.assert_array_equal(new_codes, ref_codes)
|
|
np.testing.assert_array_equal(new_residuals, ref_residuals)
|
|
np.testing.assert_allclose(new_distances, ref_distances, rtol=1e-5)
|
|
|
|
# second quant step:
|
|
K = 50
|
|
cent = rs.rand(K, d).astype('float32')
|
|
|
|
codes, residuals = ref_codes, ref_residuals
|
|
|
|
ref_codes, ref_residuals, ref_distances = beam_search_encode_step_ref(
|
|
cent, residuals, codes, L
|
|
)
|
|
|
|
new_codes, new_residuals, new_distances = beam_search_encode_step(
|
|
cent, residuals, codes, L
|
|
)
|
|
|
|
np.testing.assert_array_equal(new_codes, ref_codes)
|
|
np.testing.assert_array_equal(new_residuals, ref_residuals)
|
|
np.testing.assert_allclose(new_distances, ref_distances, rtol=1e-5)
|
|
|
|
def test_beam_search(self):
|
|
self.do_test()
|
|
|
|
def test_beam_search_assign_index(self):
|
|
self.do_test(use_assign_index=True)
|
|
|
|
def test_small_beam(self):
|
|
self.do_test(L=1)
|
|
|
|
def test_small_beam_2(self):
|
|
self.do_test(L=2)
|
|
|
|
|
|
def eval_codec(q, xb):
|
|
codes = q.compute_codes(xb)
|
|
decoded = q.decode(codes)
|
|
return ((xb - decoded) ** 2).sum()
|
|
|
|
|
|
class TestResidualQuantizer(unittest.TestCase):
|
|
|
|
def test_training(self):
|
|
"""check that the error is in the same ballpark as PQ """
|
|
ds = datasets.SyntheticDataset(32, 3000, 1000, 0)
|
|
|
|
xt = ds.get_train()
|
|
xb = ds.get_database()
|
|
|
|
rq = faiss.ResidualQuantizer(ds.d, 4, 6)
|
|
rq.verbose
|
|
rq.verbose = True
|
|
#
|
|
rq.train_type = faiss.ResidualQuantizer.Train_default
|
|
rq.cp.verbose
|
|
# rq.cp.verbose = True
|
|
rq.train(xt)
|
|
err_rq = eval_codec(rq, xb)
|
|
|
|
pq = faiss.ProductQuantizer(ds.d, 4, 6)
|
|
pq.train(xt)
|
|
err_pq = eval_codec(pq, xb)
|
|
|
|
# in practice RQ is often better than PQ but it does not the case here, so just check
|
|
# that we are within some factor.
|
|
self.assertLess(err_rq, err_pq * 1.2)
|
|
|
|
def test_beam_size(self):
|
|
""" check that a larger beam gives a lower error """
|
|
ds = datasets.SyntheticDataset(32, 3000, 1000, 0)
|
|
|
|
xt = ds.get_train()
|
|
xb = ds.get_database()
|
|
|
|
rq0 = faiss.ResidualQuantizer(ds.d, 4, 6)
|
|
rq0.train_type = faiss.ResidualQuantizer.Train_default
|
|
rq0.max_beam_size = 2
|
|
rq0.train(xt)
|
|
err_rq0 = eval_codec(rq0, xb)
|
|
|
|
rq1 = faiss.ResidualQuantizer(ds.d, 4, 6)
|
|
rq1.train_type = faiss.ResidualQuantizer.Train_default
|
|
rq1.max_beam_size = 10
|
|
rq1.train(xt)
|
|
err_rq1 = eval_codec(rq1, xb)
|
|
|
|
self.assertLess(err_rq1, err_rq0)
|
|
|
|
def test_training_with_limited_mem(self):
|
|
""" make sure a different batch size gives the same result"""
|
|
ds = datasets.SyntheticDataset(32, 3000, 1000, 0)
|
|
|
|
xt = ds.get_train()
|
|
|
|
rq0 = faiss.ResidualQuantizer(ds.d, 4, 6)
|
|
rq0.train_type = faiss.ResidualQuantizer.Train_default
|
|
rq0.max_beam_size = 5
|
|
# rq0.verbose = True
|
|
rq0.train(xt)
|
|
cb0 = get_additive_quantizer_codebooks(rq0)
|
|
|
|
rq1 = faiss.ResidualQuantizer(ds.d, 4, 6)
|
|
rq1.train_type = faiss.ResidualQuantizer.Train_default
|
|
rq1.max_beam_size = 5
|
|
rq1.max_mem_distances
|
|
rq1.max_mem_distances = 3000 * ds.d * 4 * 3
|
|
# rq1.verbose = True
|
|
rq1.train(xt)
|
|
cb1 = get_additive_quantizer_codebooks(rq1)
|
|
|
|
for c0, c1 in zip(cb0, cb1):
|
|
self.assertTrue(np.all(c0 == c1))
|
|
|
|
def test_clipping(self):
|
|
""" verify that a clipped residual quantizer gives the same
|
|
code prefix + suffix as the full RQ """
|
|
ds = datasets.SyntheticDataset(32, 1000, 100, 0)
|
|
|
|
rq = faiss.ResidualQuantizer(ds.d, 5, 4)
|
|
rq.train_type = faiss.ResidualQuantizer.Train_default
|
|
rq.max_beam_size = 5
|
|
rq.train(ds.get_train())
|
|
|
|
rq.max_beam_size = 1 # is not he same for a large beam size
|
|
codes = rq.compute_codes(ds.get_database())
|
|
|
|
rq2 = faiss.ResidualQuantizer(ds.d, 2, 4)
|
|
rq2.initialize_from(rq)
|
|
self.assertEqual(rq2.M, 2)
|
|
# verify that the beginning of the codes are the same
|
|
codes2 = rq2.compute_codes(ds.get_database())
|
|
|
|
rq3 = faiss.ResidualQuantizer(ds.d, 3, 4)
|
|
rq3.initialize_from(rq, 2)
|
|
self.assertEqual(rq3.M, 3)
|
|
codes3 = rq3.compute_codes(ds.get_database() - rq2.decode(codes2))
|
|
|
|
# verify that prefixes are the same
|
|
for i in range(ds.nb):
|
|
br = faiss.BitstringReader(faiss.swig_ptr(codes[i]), rq.code_size)
|
|
br2 = faiss.BitstringReader(faiss.swig_ptr(codes2[i]), rq2.code_size)
|
|
self.assertEqual(br.read(rq2.tot_bits), br2.read(rq2.tot_bits))
|
|
br3 = faiss.BitstringReader(faiss.swig_ptr(codes3[i]), rq3.code_size)
|
|
self.assertEqual(br.read(rq3.tot_bits), br3.read(rq3.tot_bits))
|
|
|
|
|
|
###########################################################
|
|
# Test index, index factory sa_encode / sa_decode
|
|
###########################################################
|
|
|
|
def unpack_codes(rq, packed_codes):
|
|
nbits = faiss.vector_to_array(rq.nbits)
|
|
if np.all(nbits == 8):
|
|
return packed_codes.astype("uint32")
|
|
nbits = [int(x) for x in nbits]
|
|
nb = len(nbits)
|
|
n, code_size = packed_codes.shape
|
|
codes = np.zeros((n, nb), dtype="uint32")
|
|
for i in range(n):
|
|
br = faiss.BitstringReader(faiss.swig_ptr(packed_codes[i]), code_size)
|
|
for j, nbi in enumerate(nbits):
|
|
codes[i, j] = br.read(nbi)
|
|
return codes
|
|
|
|
|
|
def retrain_AQ_codebook(index, xt):
|
|
""" reference implementation of codebook retraining """
|
|
rq = index.rq
|
|
|
|
codes_packed = index.sa_encode(xt)
|
|
n, code_size = codes_packed.shape
|
|
|
|
x_decoded = index.sa_decode(codes_packed)
|
|
MSE = ((xt - x_decoded) ** 2).sum() / n
|
|
|
|
codes = unpack_codes(index.rq, codes_packed)
|
|
codebook_offsets = faiss.vector_to_array(rq.codebook_offsets)
|
|
|
|
# build sparse code matrix (represented as a dense matrix)
|
|
C = np.zeros((n, rq.total_codebook_size))
|
|
|
|
for i in range(n):
|
|
C[i][codes[i] + codebook_offsets[:-1]] = 1
|
|
|
|
# import pdb; pdb.set_trace()
|
|
# import scipy
|
|
# B, residuals, rank, singvals = np.linalg.lstsq(C, xt, rcond=None)
|
|
if True:
|
|
B, residuals, rank, singvals = np.linalg.lstsq(C, xt, rcond=None)
|
|
else:
|
|
import scipy.linalg
|
|
B, residuals, rank, singvals = scipy.linalg.lstsq(C, xt, )
|
|
|
|
MSE = ((C @ B - xt) ** 2).sum() / n
|
|
|
|
# replace codebook
|
|
# faiss.copy_array_to_vector(B.astype('float32').ravel(), index.rq.codebooks)
|
|
# update codebook tables
|
|
# index.rq.compute_codebook_tables()
|
|
|
|
return C, B
|
|
|
|
|
|
class TestIndexResidualQuantizer(unittest.TestCase):
|
|
|
|
def test_io(self):
|
|
ds = datasets.SyntheticDataset(32, 1000, 100, 0)
|
|
|
|
xt = ds.get_train()
|
|
xb = ds.get_database()
|
|
|
|
ir = faiss.IndexResidualQuantizer(ds.d, 3, 4)
|
|
ir.rq.train_type = faiss.ResidualQuantizer.Train_default
|
|
ir.train(xt)
|
|
ref_codes = ir.sa_encode(xb)
|
|
|
|
b = faiss.serialize_index(ir)
|
|
ir2 = faiss.deserialize_index(b)
|
|
codes2 = ir2.sa_encode(xb)
|
|
|
|
np.testing.assert_array_equal(ref_codes, codes2)
|
|
|
|
def test_equiv_rq(self):
|
|
"""
|
|
make sure it is equivalent to search a RQ and to search an IVF
|
|
with RCQ + RQ with the same codebooks.
|
|
"""
|
|
ds = datasets.SyntheticDataset(32, 3000, 1000, 50)
|
|
|
|
# make a flat RQ
|
|
iflat = faiss.IndexResidualQuantizer(ds.d, 5, 4)
|
|
iflat.rq.train_type = faiss.ResidualQuantizer.Train_default
|
|
iflat.train(ds.get_train())
|
|
iflat.add(ds.get_database())
|
|
|
|
# ref search result
|
|
Dref, Iref = iflat.search(ds.get_queries(), 10)
|
|
|
|
# get its codebooks + encoded version of the dataset
|
|
codebooks = get_additive_quantizer_codebooks(iflat.rq)
|
|
codes = faiss.vector_to_array(iflat.codes).reshape(-1, iflat.code_size)
|
|
|
|
# make an IVF with 2x4 + 3x4 = 5x4 bits
|
|
ivf = faiss.index_factory(ds.d, "IVF256(RCQ2x4),RQ3x4")
|
|
|
|
# initialize the codebooks
|
|
rcq = faiss.downcast_index(ivf.quantizer)
|
|
faiss.copy_array_to_vector(
|
|
np.vstack(codebooks[:rcq.rq.M]).ravel(),
|
|
rcq.rq.codebooks
|
|
)
|
|
rcq.rq.is_trained = True
|
|
# translation of AdditiveCoarseQuantizer::train
|
|
rcq.ntotal = 1 << rcq.rq.tot_bits
|
|
rcq.centroid_norms.resize(rcq.ntotal)
|
|
rcq.rq.compute_centroid_norms(rcq.centroid_norms.data())
|
|
rcq.is_trained = True
|
|
|
|
faiss.copy_array_to_vector(
|
|
np.vstack(codebooks[rcq.rq.M:]).ravel(),
|
|
ivf.rq.codebooks
|
|
)
|
|
ivf.rq.is_trained = True
|
|
ivf.is_trained = True
|
|
|
|
# add the codes (this works because 2x4 is a multiple of 8 bits)
|
|
ivf.add_sa_codes(codes)
|
|
|
|
# perform exhaustive search
|
|
ivf.nprobe = ivf.nlist
|
|
|
|
Dnew, Inew = ivf.search(ds.get_queries(), 10)
|
|
|
|
np.testing.assert_array_equal(Iref, Inew)
|
|
np.testing.assert_array_almost_equal(Dref, Dnew, decimal=5)
|
|
|
|
def test_factory(self):
|
|
index = faiss.index_factory(5, "RQ2x16_3x8_6x4")
|
|
|
|
np.testing.assert_array_equal(
|
|
faiss.vector_to_array(index.rq.nbits),
|
|
np.array([16, 16, 8, 8, 8, 4, 4, 4, 4, 4, 4])
|
|
)
|
|
|
|
def test_factory_norm(self):
|
|
index = faiss.index_factory(5, "RQ8x8_Nqint8")
|
|
self.assertEqual(
|
|
index.rq.search_type,
|
|
faiss.AdditiveQuantizer.ST_norm_qint8)
|
|
|
|
def test_search_decompress(self):
|
|
ds = datasets.SyntheticDataset(32, 1000, 1000, 100)
|
|
|
|
xt = ds.get_train()
|
|
xb = ds.get_database()
|
|
|
|
ir = faiss.IndexResidualQuantizer(ds.d, 3, 4)
|
|
ir.rq.train_type = faiss.ResidualQuantizer.Train_default
|
|
ir.train(xt)
|
|
ir.add(xb)
|
|
|
|
D, I = ir.search(ds.get_queries(), 10)
|
|
gt = ds.get_groundtruth()
|
|
|
|
recalls = {
|
|
rank: (I[:, :rank] == gt[:, :1]).sum() / len(gt)
|
|
for rank in [1, 10, 100]
|
|
}
|
|
# recalls are {1: 0.05, 10: 0.37, 100: 0.37}
|
|
self.assertGreater(recalls[10], 0.35)
|
|
|
|
def do_exact_search_equiv(self, norm_type):
|
|
""" searching with this normalization should yield
|
|
exactly the same results as decompression (because the
|
|
norms are exact) """
|
|
ds = datasets.SyntheticDataset(32, 1000, 1000, 100)
|
|
|
|
# decompresses by default
|
|
ir = faiss.IndexResidualQuantizer(ds.d, 3, 6)
|
|
ir.rq.train_type = faiss.ResidualQuantizer.Train_default
|
|
ir.train(ds.get_train())
|
|
ir.add(ds.get_database())
|
|
Dref, Iref = ir.search(ds.get_queries(), 10)
|
|
|
|
ir2 = faiss.IndexResidualQuantizer(
|
|
ds.d, 3, 6, faiss.METRIC_L2, norm_type)
|
|
|
|
# assumes training is reproducible
|
|
ir2.rq.train_type = faiss.ResidualQuantizer.Train_default
|
|
ir2.train(ds.get_train())
|
|
ir2.add(ds.get_database())
|
|
D, I = ir2.search(ds.get_queries(), 10)
|
|
|
|
np.testing.assert_allclose(D, Dref, atol=1e-5)
|
|
np.testing.assert_array_equal(I, Iref)
|
|
|
|
def test_exact_equiv_norm_float(self):
|
|
self.do_exact_search_equiv(faiss.AdditiveQuantizer.ST_norm_float)
|
|
|
|
def test_exact_equiv_norm_from_LUT(self):
|
|
self.do_exact_search_equiv(faiss.AdditiveQuantizer.ST_norm_from_LUT)
|
|
|
|
def test_reestimate_codebook(self):
|
|
ds = datasets.SyntheticDataset(32, 1000, 1000, 100)
|
|
|
|
xt = ds.get_train()
|
|
xb = ds.get_database()
|
|
|
|
ir = faiss.IndexResidualQuantizer(ds.d, 3, 4)
|
|
ir.train(xt)
|
|
|
|
# ir.rq.verbose = True
|
|
xb_decoded = ir.sa_decode(ir.sa_encode(xb))
|
|
err_before = ((xb - xb_decoded) ** 2).sum()
|
|
|
|
# test manual call of retrain_AQ_codebook
|
|
|
|
ref_C, ref_codebook = retrain_AQ_codebook(ir, xb)
|
|
ir.rq.retrain_AQ_codebook(len(xb), faiss.swig_ptr(xb))
|
|
|
|
xb_decoded = ir.sa_decode(ir.sa_encode(xb))
|
|
err_after = ((xb - xb_decoded) ** 2).sum()
|
|
|
|
# ref run: 8347.857 vs. 7710.014
|
|
self.assertGreater(err_before, err_after * 1.05)
|
|
|
|
def test_reestimate_codebook_2(self):
|
|
ds = datasets.SyntheticDataset(32, 1000, 0, 0)
|
|
xt = ds.get_train()
|
|
|
|
ir = faiss.IndexResidualQuantizer(ds.d, 3, 4)
|
|
ir.rq.train_type = 0
|
|
ir.train(xt)
|
|
|
|
xt_decoded = ir.sa_decode(ir.sa_encode(xt))
|
|
err_before = ((xt - xt_decoded) ** 2).sum()
|
|
|
|
ir = faiss.IndexResidualQuantizer(ds.d, 3, 4)
|
|
ir.rq.train_type = faiss.ResidualQuantizer.Train_refine_codebook
|
|
ir.train(xt)
|
|
|
|
xt_decoded = ir.sa_decode(ir.sa_encode(xt))
|
|
err_after_refined = ((xt - xt_decoded) ** 2).sum()
|
|
|
|
# ref run 7474.98 / 7006.1777
|
|
self.assertGreater(err_before, err_after_refined * 1.06)
|
|
|
|
|
|
|
|
|
|
|
|
###########################################################
|
|
# As a coarse quantizer
|
|
###########################################################
|
|
|
|
class TestIVFResidualCoarseQuantizer(unittest.TestCase):
|
|
|
|
def test_IVF_resiudal(self):
|
|
ds = datasets.SyntheticDataset(32, 3000, 1000, 100)
|
|
|
|
xt = ds.get_train()
|
|
xb = ds.get_database()
|
|
|
|
gt = ds.get_groundtruth(1)
|
|
|
|
# RQ 2x6 = 12 bits = 4096 centroids
|
|
quantizer = faiss.ResidualCoarseQuantizer(ds.d, 2, 6)
|
|
rq = quantizer.rq
|
|
rq.train_type = faiss.ResidualQuantizer.Train_default
|
|
index = faiss.IndexIVFFlat(quantizer, ds.d, 1 << rq.tot_bits)
|
|
index.quantizer_trains_alone
|
|
index.quantizer_trains_alone = True
|
|
|
|
index.train(xt)
|
|
index.add(xb)
|
|
|
|
# make sure that increasing the nprobe increases accuracy
|
|
|
|
index.nprobe = 10
|
|
D, I = index.search(ds.get_queries(), 10)
|
|
r10 = (I == gt[None, :]).sum() / ds.nq
|
|
|
|
index.nprobe = 40
|
|
D, I = index.search(ds.get_queries(), 10)
|
|
r40 = (I == gt[None, :]).sum() / ds.nq
|
|
|
|
self.assertGreater(r40, r10)
|
|
|
|
# make sure that decreasing beam factor decreases accuracy
|
|
quantizer.beam_factor
|
|
quantizer.beam_factor = 1.0
|
|
index.nprobe = 10
|
|
D, I = index.search(ds.get_queries(), 10)
|
|
r10_narrow_beam = (I == gt[None, :]).sum() / ds.nq
|
|
|
|
self.assertGreater(r10, r10_narrow_beam)
|
|
|
|
def test_factory(self):
|
|
ds = datasets.SyntheticDataset(16, 500, 1000, 100)
|
|
|
|
index = faiss.index_factory(ds.d, "IVF1024(RCQ2x5),Flat")
|
|
index.train(ds.get_train())
|
|
index.add(ds.get_database())
|
|
|
|
Dref, Iref = index.search(ds.get_queries(), 10)
|
|
|
|
b = faiss.serialize_index(index)
|
|
index2 = faiss.deserialize_index(b)
|
|
|
|
Dnew, Inew = index2.search(ds.get_queries(), 10)
|
|
|
|
np.testing.assert_equal(Dref, Dnew)
|
|
np.testing.assert_equal(Iref, Inew)
|
|
|
|
def test_ivfsq(self):
|
|
ds = datasets.SyntheticDataset(32, 3000, 1000, 100)
|
|
|
|
xt = ds.get_train()
|
|
xb = ds.get_database()
|
|
|
|
gt = ds.get_groundtruth(1)
|
|
|
|
# RQ 2x5 = 10 bits = 1024 centroids
|
|
index = faiss.index_factory(ds.d, "IVF1024(RCQ2x5),SQ8")
|
|
quantizer = faiss.downcast_index(index.quantizer)
|
|
rq = quantizer.rq
|
|
rq.train_type = faiss.ResidualQuantizer.Train_default
|
|
|
|
index.train(xt)
|
|
index.add(xb)
|
|
|
|
# make sure that increasing the nprobe increases accuracy
|
|
|
|
index.nprobe = 10
|
|
D, I = index.search(ds.get_queries(), 10)
|
|
r10 = (I == gt[None, :]).sum() / ds.nq
|
|
|
|
index.nprobe = 40
|
|
D, I = index.search(ds.get_queries(), 10)
|
|
r40 = (I == gt[None, :]).sum() / ds.nq
|
|
|
|
self.assertGreater(r40, r10)
|
|
|
|
def test_rcq_LUT(self):
|
|
ds = datasets.SyntheticDataset(32, 3000, 1000, 100)
|
|
|
|
xt = ds.get_train()
|
|
xb = ds.get_database()
|
|
|
|
# RQ 2x5 = 10 bits = 1024 centroids
|
|
index = faiss.index_factory(ds.d, "IVF1024(RCQ2x5),SQ8")
|
|
|
|
quantizer = faiss.downcast_index(index.quantizer)
|
|
rq = quantizer.rq
|
|
rq.train_type = faiss.ResidualQuantizer.Train_default
|
|
|
|
index.train(xt)
|
|
index.add(xb)
|
|
index.nprobe = 10
|
|
|
|
# set exact centroids as coarse quantizer
|
|
all_centroids = quantizer.reconstruct_n(0, quantizer.ntotal)
|
|
q2 = faiss.IndexFlatL2(32)
|
|
q2.add(all_centroids)
|
|
index.quantizer = q2
|
|
Dref, Iref = index.search(ds.get_queries(), 10)
|
|
index.quantizer = quantizer
|
|
|
|
# search with LUT
|
|
quantizer.set_beam_factor(-1)
|
|
Dnew, Inew = index.search(ds.get_queries(), 10)
|
|
|
|
np.testing.assert_array_almost_equal(Dref, Dnew, decimal=5)
|
|
np.testing.assert_array_equal(Iref, Inew)
|
|
|
|
# check i/o
|
|
CDref, CIref = quantizer.search(ds.get_queries(), 10)
|
|
quantizer2 = faiss.deserialize_index(faiss.serialize_index(quantizer))
|
|
quantizer2.search(ds.get_queries(), 10)
|
|
CDnew, CInew = quantizer2.search(ds.get_queries(), 10)
|
|
np.testing.assert_array_almost_equal(CDref, CDnew, decimal=5)
|
|
np.testing.assert_array_equal(CIref, CInew)
|
|
|
|
# check that you can load the index without computing the tables
|
|
quantizer.set_beam_factor(2.0)
|
|
self.assertNotEqual(quantizer.rq.codebook_cross_products.size(), 0)
|
|
quantizer3 = faiss.deserialize_index(
|
|
faiss.serialize_index(quantizer),
|
|
faiss.IO_FLAG_SKIP_PRECOMPUTE_TABLE
|
|
)
|
|
self.assertEqual(quantizer3.rq.codebook_cross_products.size(), 0)
|
|
CD3, CI3 = quantizer3.search(ds.get_queries(), 10)
|
|
|
|
|
|
###########################################################
|
|
# Test search with LUTs
|
|
###########################################################
|
|
|
|
|
|
class TestAdditiveQuantizerWithLUT(unittest.TestCase):
|
|
|
|
def test_RCQ_knn(self):
|
|
ds = datasets.SyntheticDataset(32, 1000, 0, 123)
|
|
xt = ds.get_train()
|
|
xq = ds.get_queries()
|
|
|
|
# RQ 3+4+5 = 12 bits = 4096 centroids
|
|
rcq = faiss.index_factory(ds.d, "RCQ1x3_1x4_1x5")
|
|
rcq.train(xt)
|
|
|
|
aq = rcq.rq
|
|
|
|
cents = rcq.reconstruct_n(0, rcq.ntotal)
|
|
|
|
sp = faiss.swig_ptr
|
|
|
|
# test norms computation
|
|
|
|
norms_ref = (cents ** 2).sum(1)
|
|
norms = np.zeros(1 << aq.tot_bits, dtype="float32")
|
|
aq.compute_centroid_norms(sp(norms))
|
|
|
|
np.testing.assert_array_almost_equal(norms, norms_ref, decimal=5)
|
|
|
|
# test IP search
|
|
|
|
Dref, Iref = faiss.knn(
|
|
xq, cents, 10,
|
|
metric=faiss.METRIC_INNER_PRODUCT
|
|
)
|
|
|
|
Dnew = np.zeros_like(Dref)
|
|
Inew = np.zeros_like(Iref)
|
|
|
|
aq.knn_centroids_inner_product(len(xq), sp(xq), 10, sp(Dnew), sp(Inew))
|
|
|
|
np.testing.assert_array_almost_equal(Dref, Dnew, decimal=5)
|
|
np.testing.assert_array_equal(Iref, Inew)
|
|
|
|
# test L2 search
|
|
|
|
Dref, Iref = faiss.knn(xq, cents, 10, metric=faiss.METRIC_L2)
|
|
|
|
Dnew = np.zeros_like(Dref)
|
|
Inew = np.zeros_like(Iref)
|
|
|
|
aq.knn_centroids_L2(len(xq), sp(xq), 10, sp(Dnew), sp(Inew), sp(norms))
|
|
|
|
np.testing.assert_array_equal(Iref, Inew)
|
|
np.testing.assert_array_almost_equal(Dref, Dnew, decimal=5)
|
|
|
|
|
|
class TestIndexResidualQuantizerSearch(unittest.TestCase):
|
|
|
|
def test_search_IP(self):
|
|
ds = datasets.SyntheticDataset(32, 1000, 200, 100)
|
|
|
|
xt = ds.get_train()
|
|
xb = ds.get_database()
|
|
xq = ds.get_queries()
|
|
|
|
ir = faiss.IndexResidualQuantizer(
|
|
ds.d, 3, 4, faiss.METRIC_INNER_PRODUCT)
|
|
ir.rq.train_type = faiss.ResidualQuantizer.Train_default
|
|
ir.train(xt)
|
|
|
|
ir.add(xb)
|
|
|
|
Dref, Iref = ir.search(xq, 4)
|
|
|
|
AQ = faiss.AdditiveQuantizer
|
|
ir2 = faiss.IndexResidualQuantizer(
|
|
ds.d, 3, 4, faiss.METRIC_INNER_PRODUCT, AQ.ST_LUT_nonorm)
|
|
ir2.rq.codebooks = ir.rq.codebooks # fake training
|
|
ir2.rq.is_trained = True
|
|
ir2.is_trained = True
|
|
ir2.add(xb)
|
|
|
|
D2, I2 = ir2.search(xq, 4)
|
|
|
|
np.testing.assert_array_equal(Iref, I2)
|
|
np.testing.assert_array_almost_equal(Dref, D2, decimal=5)
|
|
|
|
def test_search_L2(self):
|
|
ds = datasets.SyntheticDataset(32, 1000, 200, 100)
|
|
|
|
xt = ds.get_train()
|
|
xb = ds.get_database()
|
|
xq = ds.get_queries()
|
|
gt = ds.get_groundtruth(10)
|
|
|
|
ir = faiss.IndexResidualQuantizer(ds.d, 3, 4)
|
|
ir.rq.train_type = faiss.ResidualQuantizer.Train_default
|
|
ir.rq.max_beam_size = 30
|
|
ir.train(xt)
|
|
|
|
# reference run w/ decoding
|
|
ir.add(xb)
|
|
Dref, Iref = ir.search(xq, 10)
|
|
|
|
# 388
|
|
inter_ref = faiss.eval_intersection(Iref, gt)
|
|
|
|
AQ = faiss.AdditiveQuantizer
|
|
for st in AQ.ST_norm_float, AQ.ST_norm_qint8, AQ.ST_norm_qint4, \
|
|
AQ.ST_norm_cqint8, AQ.ST_norm_cqint4:
|
|
|
|
ir2 = faiss.IndexResidualQuantizer(ds.d, 3, 4, faiss.METRIC_L2, st)
|
|
ir2.rq.max_beam_size = 30
|
|
ir2.train(xt) # to get the norm bounds
|
|
ir2.rq.codebooks = ir.rq.codebooks # fake training
|
|
ir2.add(xb)
|
|
|
|
D2, I2 = ir2.search(xq, 10)
|
|
|
|
if st == AQ.ST_norm_float:
|
|
np.testing.assert_array_almost_equal(Dref, D2, decimal=5)
|
|
self.assertLess((Iref != I2).sum(), Iref.size * 0.05)
|
|
else:
|
|
inter_2 = faiss.eval_intersection(I2, gt)
|
|
self.assertGreaterEqual(inter_ref, inter_2)
|
|
|
|
|
|
###########################################################
|
|
# IVF version
|
|
###########################################################
|
|
|
|
|
|
class TestIVFResidualQuantizer(unittest.TestCase):
|
|
|
|
def do_test_accuracy(self, by_residual, st):
|
|
ds = datasets.SyntheticDataset(32, 3000, 1000, 100)
|
|
|
|
quantizer = faiss.IndexFlatL2(ds.d)
|
|
|
|
index = faiss.IndexIVFResidualQuantizer(
|
|
quantizer, ds.d, 100, 3, 4,
|
|
faiss.METRIC_L2, st
|
|
)
|
|
index.by_residual = by_residual
|
|
|
|
index.rq.train_type
|
|
index.rq.train_type = faiss.ResidualQuantizer.Train_default
|
|
index.rq.max_beam_size = 30
|
|
|
|
index.train(ds.get_train())
|
|
index.add(ds.get_database())
|
|
|
|
inters = []
|
|
for nprobe in 1, 2, 5, 10, 20, 50:
|
|
index.nprobe = nprobe
|
|
D, I = index.search(ds.get_queries(), 10)
|
|
inter = faiss.eval_intersection(I, ds.get_groundtruth(10))
|
|
inters.append(inter)
|
|
|
|
# do a little I/O test
|
|
index2 = faiss.deserialize_index(faiss.serialize_index(index))
|
|
D2, I2 = index2.search(ds.get_queries(), 10)
|
|
np.testing.assert_array_equal(I2, I)
|
|
np.testing.assert_array_equal(D2, D)
|
|
|
|
inters = np.array(inters)
|
|
|
|
if by_residual:
|
|
# check that we have increasing intersection measures with
|
|
# nprobe
|
|
self.assertTrue(np.all(inters[1:] >= inters[:-1]))
|
|
else:
|
|
self.assertTrue(np.all(inters[1:3] >= inters[:2]))
|
|
# check that we have the same result as the flat residual quantizer
|
|
iflat = faiss.IndexResidualQuantizer(
|
|
ds.d, 3, 4, faiss.METRIC_L2, st)
|
|
iflat.rq.train_type
|
|
iflat.rq.train_type = faiss.ResidualQuantizer.Train_default
|
|
iflat.rq.max_beam_size = 30
|
|
iflat.train(ds.get_train())
|
|
iflat.rq.codebooks = index.rq.codebooks
|
|
|
|
iflat.add(ds.get_database())
|
|
Dref, Iref = iflat.search(ds.get_queries(), 10)
|
|
|
|
index.nprobe = 100
|
|
D2, I2 = index.search(ds.get_queries(), 10)
|
|
np.testing.assert_array_almost_equal(Dref, D2, decimal=5)
|
|
# there are many ties because the codes are so short
|
|
self.assertLess((Iref != I2).sum(), Iref.size * 0.2)
|
|
|
|
def test_decompress_no_residual(self):
|
|
self.do_test_accuracy(False, faiss.AdditiveQuantizer.ST_decompress)
|
|
|
|
def test_norm_float_no_residual(self):
|
|
self.do_test_accuracy(False, faiss.AdditiveQuantizer.ST_norm_float)
|
|
|
|
def test_decompress(self):
|
|
self.do_test_accuracy(True, faiss.AdditiveQuantizer.ST_decompress)
|
|
|
|
def test_norm_float(self):
|
|
self.do_test_accuracy(True, faiss.AdditiveQuantizer.ST_norm_float)
|
|
|
|
def test_norm_cqint(self):
|
|
self.do_test_accuracy(True, faiss.AdditiveQuantizer.ST_norm_cqint8)
|
|
self.do_test_accuracy(True, faiss.AdditiveQuantizer.ST_norm_cqint4)
|
|
|
|
def test_norm_from_LUT(self):
|
|
self.do_test_accuracy(True, faiss.AdditiveQuantizer.ST_norm_from_LUT)
|
|
|
|
def test_factory(self):
|
|
index = faiss.index_factory(12, "IVF1024,RQ8x8_Nfloat")
|
|
self.assertEqual(index.nlist, 1024)
|
|
self.assertEqual(
|
|
index.rq.search_type,
|
|
faiss.AdditiveQuantizer.ST_norm_float
|
|
)
|
|
|
|
index = faiss.index_factory(12, "IVF1024,RQ8x8_Ncqint8")
|
|
self.assertEqual(
|
|
index.rq.search_type,
|
|
faiss.AdditiveQuantizer.ST_norm_cqint8
|
|
)
|
|
index = faiss.index_factory(12, "IVF1024,RQ8x8_Ncqint4")
|
|
self.assertEqual(
|
|
index.rq.search_type,
|
|
faiss.AdditiveQuantizer.ST_norm_cqint4
|
|
)
|
|
|
|
def do_test_accuracy_IP(self, by_residual):
|
|
ds = datasets.SyntheticDataset(32, 3000, 1000, 100, "IP")
|
|
|
|
quantizer = faiss.IndexFlatIP(ds.d)
|
|
|
|
index = faiss.IndexIVFResidualQuantizer(
|
|
quantizer, ds.d, 100, 3, 4,
|
|
faiss.METRIC_INNER_PRODUCT, faiss.AdditiveQuantizer.ST_decompress
|
|
)
|
|
index.cp.spherical = True
|
|
index.by_residual = by_residual
|
|
|
|
index.rq.train_type
|
|
index.rq.train_type = faiss.ResidualQuantizer.Train_default
|
|
index.train(ds.get_train())
|
|
|
|
index.add(ds.get_database())
|
|
|
|
inters = []
|
|
for nprobe in 1, 2, 5, 10, 20, 50:
|
|
index.nprobe = nprobe
|
|
index.rq.search_type = faiss.AdditiveQuantizer.ST_decompress
|
|
D, I = index.search(ds.get_queries(), 10)
|
|
index.rq.search_type = faiss.AdditiveQuantizer.ST_LUT_nonorm
|
|
D2, I2 = index.search(ds.get_queries(), 10)
|
|
np.testing.assert_array_almost_equal(D, D2, decimal=5)
|
|
# there are many ties because the codes are so short
|
|
self.assertLess((I != I2).sum(), I.size * 0.1)
|
|
|
|
# D2, I2 = index2.search(ds.get_queries(), 10)
|
|
|
|
inter = faiss.eval_intersection(I, ds.get_groundtruth(10))
|
|
inters.append(inter)
|
|
self.assertTrue(np.all(inters[1:4] >= inters[:3]))
|
|
|
|
def test_no_residual_IP(self):
|
|
self.do_test_accuracy_IP(False)
|
|
|
|
def test_residual_IP(self):
|
|
self.do_test_accuracy_IP(True)
|
|
|
|
|
|
############################################################
|
|
# Test functions that use precomputed codebook products
|
|
############################################################
|
|
|
|
|
|
def precomp_codebooks(codebooks):
|
|
M = len(codebooks)
|
|
codebook_cross_prods = [
|
|
[codebooks[m1] @ codebooks[m].T for m1 in range(m)] for m in range(M)
|
|
]
|
|
cent_norms = [
|
|
(c ** 2).sum(1)
|
|
for c in codebooks
|
|
]
|
|
return codebook_cross_prods, cent_norms
|
|
|
|
|
|
############################################################
|
|
# Reference imelementation of table-based beam search (use_beam_LUT=1)
|
|
############################################################
|
|
|
|
def beam_search_encode_step_tab(codes, L, distances, codebook_cross_prods_i,
|
|
query_cp_i, cent_norms_i):
|
|
""" Reference beam search implementation
|
|
encodes a residual table.
|
|
"""
|
|
n, beam_size, m = codes.shape
|
|
|
|
n2, beam_size_2 = distances.shape
|
|
assert n2 == n and beam_size_2 == beam_size
|
|
n2, K = query_cp_i.shape
|
|
assert n2 == n
|
|
K2, = cent_norms_i.shape
|
|
assert K == K2
|
|
assert len(codebook_cross_prods_i) == m
|
|
|
|
# n, beam_size, K
|
|
new_distances = distances[:, :, None] + cent_norms_i[None, None, :]
|
|
new_distances -= 2 * query_cp_i[:, None, :]
|
|
|
|
dotprods = np.zeros((n, beam_size, K))
|
|
|
|
for j in range(m):
|
|
cb = codebook_cross_prods_i[j]
|
|
for i in range(n):
|
|
for b in range(beam_size):
|
|
dotprods[i, b, :] += cb[codes[i, b, j]]
|
|
|
|
new_distances += 2 * dotprods
|
|
cent_distances = new_distances
|
|
|
|
# TODO write in vector form
|
|
|
|
if beam_size * K <= L:
|
|
# then keep all the results
|
|
new_beam_size = beam_size * K
|
|
new_codes = np.zeros((n, beam_size, K, m + 1), dtype=int)
|
|
for i in range(n):
|
|
new_codes[i, :, :, :-1] = codes[i]
|
|
new_codes[i, :, :, -1] = np.arange(K)
|
|
new_codes = new_codes.reshape(n, new_beam_size, m + 1)
|
|
new_distances = cent_distances.reshape(n, new_beam_size)
|
|
else:
|
|
# keep top-L results
|
|
new_beam_size = L
|
|
new_codes = np.zeros((n, L, m + 1), dtype=int)
|
|
new_distances = np.zeros((n, L), dtype='float32')
|
|
for i in range(n):
|
|
cd = cent_distances[i].ravel()
|
|
jl = np.argsort(cd)[:L] # TODO argpartition
|
|
js = jl // K # input beam index
|
|
ls = jl % K # centroid index
|
|
new_codes[i, :, :-1] = codes[i, js, :]
|
|
new_codes[i, :, -1] = ls
|
|
new_distances[i, :] = cd[jl]
|
|
|
|
return new_codes, new_distances
|
|
|
|
|
|
def beam_search_encoding_tab(codebooks, x, L, precomp, implem="ref"):
|
|
"""
|
|
Perform encoding of vectors x with a beam search of size L
|
|
"""
|
|
compare_implem = "ref" in implem and "cpp" in implem
|
|
|
|
query_cross_prods = [
|
|
x @ c.T for c in codebooks
|
|
]
|
|
|
|
M = len(codebooks)
|
|
codebook_offsets = np.zeros(M + 1, dtype='uint64')
|
|
codebook_offsets[1:] = np.cumsum([len(cb) for cb in codebooks])
|
|
codebook_cross_prods, cent_norms = precomp
|
|
n, d = x.shape
|
|
beam_size = 1
|
|
codes = np.zeros((n, beam_size, 0), dtype='int32')
|
|
distances = (x ** 2).sum(1).reshape(n, beam_size)
|
|
|
|
for m, cent in enumerate(codebooks):
|
|
|
|
if "ref" in implem:
|
|
new_codes, new_distances = beam_search_encode_step_tab(
|
|
codes, L,
|
|
distances, codebook_cross_prods[m][:m],
|
|
query_cross_prods[m], cent_norms[m]
|
|
)
|
|
new_beam_size = codes.shape[1]
|
|
|
|
if compare_implem:
|
|
codes_ref = new_codes
|
|
distances_ref = new_distances
|
|
|
|
if "cpp" in implem:
|
|
K = len(cent)
|
|
new_beam_size = min(beam_size * K, L)
|
|
new_codes = np.zeros((n, new_beam_size, m + 1), dtype='int32')
|
|
new_distances = np.zeros((n, new_beam_size), dtype="float32")
|
|
if m > 0:
|
|
cp = np.vstack(codebook_cross_prods[m][:m])
|
|
else:
|
|
cp = np.zeros((0, K), dtype='float32')
|
|
|
|
sp = faiss.swig_ptr
|
|
faiss.beam_search_encode_step_tab(
|
|
K, n, beam_size,
|
|
sp(cp), cp.shape[1],
|
|
sp(codebook_offsets),
|
|
sp(query_cross_prods[m]), query_cross_prods[m].shape[1],
|
|
sp(cent_norms[m]),
|
|
m,
|
|
sp(codes), sp(distances),
|
|
new_beam_size,
|
|
sp(new_codes), sp(new_distances)
|
|
)
|
|
|
|
if compare_implem:
|
|
np.testing.assert_array_almost_equal(
|
|
new_distances, distances_ref, decimal=5)
|
|
np.testing.assert_array_equal(
|
|
new_codes, codes_ref)
|
|
|
|
codes = new_codes
|
|
distances = new_distances
|
|
beam_size = new_beam_size
|
|
|
|
return (codes, distances)
|
|
|
|
|
|
class TestCrossCodebookComputations(unittest.TestCase):
|
|
|
|
def test_precomp(self):
|
|
ds = datasets.SyntheticDataset(32, 1000, 1000, 0)
|
|
|
|
# make sure it work with varying nb of bits
|
|
nbits = faiss.UInt64Vector()
|
|
nbits.push_back(5)
|
|
nbits.push_back(6)
|
|
nbits.push_back(7)
|
|
|
|
rq = faiss.ResidualQuantizer(ds.d, nbits)
|
|
rq.train_type = faiss.ResidualQuantizer.Train_default
|
|
rq.train(ds.get_train())
|
|
|
|
codebooks = get_additive_quantizer_codebooks(rq)
|
|
precomp = precomp_codebooks(codebooks)
|
|
codebook_cross_prods_ref, cent_norms_ref = precomp
|
|
|
|
# validate that the python tab-based encoding works
|
|
xb = ds.get_database()
|
|
ref_codes, _, _ = beam_search_encoding_ref(codebooks, xb, 7)
|
|
new_codes, _ = beam_search_encoding_tab(codebooks, xb, 7, precomp)
|
|
np.testing.assert_array_equal(ref_codes, new_codes)
|
|
|
|
# check C++ precomp tables
|
|
rq.compute_codebook_tables()
|
|
codebook_cross_prods = faiss.vector_to_array(
|
|
rq.codebook_cross_products)
|
|
ofs = 0
|
|
for m in range(1, rq.M):
|
|
py_table = np.vstack(codebook_cross_prods_ref[m])
|
|
kk = rq.codebook_offsets.at(m)
|
|
K = 1 << rq.nbits.at(m)
|
|
cpp_table = codebook_cross_prods[ofs:ofs + K * kk].reshape(kk, K)
|
|
ofs += kk * K
|
|
np.testing.assert_allclose(py_table, cpp_table, atol=1e-5)
|
|
|
|
cent_norms = faiss.vector_to_array(rq.centroid_norms)
|
|
np.testing.assert_array_almost_equal(
|
|
np.hstack(cent_norms_ref), cent_norms, decimal=5)
|
|
|
|
# validate the C++ beam_search_encode_step_tab function
|
|
beam_search_encoding_tab(codebooks, xb, 7, precomp, implem="ref cpp")
|
|
|
|
# check implem w/ residuals
|
|
n = ref_codes.shape[0]
|
|
sp = faiss.swig_ptr
|
|
ref_codes_packed = np.zeros((n, rq.code_size), dtype='uint8')
|
|
ref_codes_int32 = ref_codes.astype('int32')
|
|
rq.pack_codes(
|
|
n, sp(ref_codes_int32),
|
|
sp(ref_codes_packed), rq.M * ref_codes.shape[1]
|
|
)
|
|
|
|
rq.max_beam_size = 7
|
|
codes_ref_residuals = rq.compute_codes(xb)
|
|
np.testing.assert_array_equal(ref_codes_packed, codes_ref_residuals)
|
|
|
|
rq.use_beam_LUT = 1
|
|
codes_new = rq.compute_codes(xb)
|
|
np.testing.assert_array_equal(codes_ref_residuals, codes_new)
|
|
|
|
|
|
class TestProductResidualQuantizer(unittest.TestCase):
|
|
|
|
def test_codec(self):
|
|
"""check that the error is in the same ballpark as PQ."""
|
|
ds = datasets.SyntheticDataset(64, 3000, 3000, 0)
|
|
|
|
xt = ds.get_train()
|
|
xb = ds.get_database()
|
|
|
|
nsplits = 2
|
|
Msub = 2
|
|
nbits = 4
|
|
|
|
prq = faiss.ProductResidualQuantizer(ds.d, nsplits, Msub, nbits)
|
|
prq.train(xt)
|
|
err_prq = eval_codec(prq, xb)
|
|
|
|
pq = faiss.ProductQuantizer(ds.d, nsplits * Msub, nbits)
|
|
pq.train(xt)
|
|
err_pq = eval_codec(pq, xb)
|
|
|
|
self.assertLess(err_prq, err_pq)
|
|
|
|
def test_with_rq(self):
|
|
"""compare with RQ when nsplits = 1"""
|
|
ds = datasets.SyntheticDataset(32, 3000, 3000, 0)
|
|
|
|
xt = ds.get_train()
|
|
xb = ds.get_database()
|
|
|
|
M = 4
|
|
nbits = 4
|
|
|
|
prq = faiss.ProductResidualQuantizer(ds.d, 1, M, nbits)
|
|
prq.train(xt)
|
|
err_prq = eval_codec(prq, xb)
|
|
|
|
rq = faiss.ResidualQuantizer(ds.d, M, nbits)
|
|
rq.train(xt)
|
|
err_rq = eval_codec(rq, xb)
|
|
|
|
self.assertEqual(err_prq, err_rq)
|
|
|
|
|
|
class TestIndexProductResidualQuantizer(unittest.TestCase):
|
|
|
|
def test_accuracy1(self):
|
|
"""check that the error is in the same ballpark as RQ."""
|
|
recall1 = self.eval_index_accuracy("PRQ4x3x5_Nqint8")
|
|
recall2 = self.eval_index_accuracy("RQ12x5_Nqint8")
|
|
self.assertGreaterEqual(recall1 * 1.1, recall2) # 657 vs 665
|
|
|
|
def test_accuracy2(self):
|
|
"""when nsplits = 1, PRQ should be the same as RQ"""
|
|
recall1 = self.eval_index_accuracy("PRQ1x3x5_Nqint8")
|
|
recall2 = self.eval_index_accuracy("RQ3x5_Nqint8")
|
|
self.assertEqual(recall1, recall2)
|
|
|
|
def eval_index_accuracy(self, index_key):
|
|
ds = datasets.SyntheticDataset(32, 1000, 1000, 100)
|
|
index = faiss.index_factory(ds.d, index_key)
|
|
|
|
index.train(ds.get_train())
|
|
index.add(ds.get_database())
|
|
D, I = index.search(ds.get_queries(), 10)
|
|
inter = faiss.eval_intersection(I, ds.get_groundtruth(10))
|
|
|
|
# do a little I/O test
|
|
index2 = faiss.deserialize_index(faiss.serialize_index(index))
|
|
D2, I2 = index2.search(ds.get_queries(), 10)
|
|
np.testing.assert_array_equal(I2, I)
|
|
np.testing.assert_array_equal(D2, D)
|
|
|
|
return inter
|
|
|
|
def test_factory(self):
|
|
AQ = faiss.AdditiveQuantizer
|
|
ns, Msub, nbits = 2, 4, 8
|
|
index = faiss.index_factory(64, f"PRQ{ns}x{Msub}x{nbits}_Nqint8")
|
|
assert isinstance(index, faiss.IndexProductResidualQuantizer)
|
|
self.assertEqual(index.prq.nsplits, ns)
|
|
self.assertEqual(index.prq.subquantizer(0).M, Msub)
|
|
self.assertEqual(index.prq.subquantizer(0).nbits.at(0), nbits)
|
|
self.assertEqual(index.prq.search_type, AQ.ST_norm_qint8)
|
|
|
|
code_size = (ns * Msub * nbits + 7) // 8 + 1
|
|
self.assertEqual(index.prq.code_size, code_size)
|
|
|
|
|
|
class TestIndexIVFProductResidualQuantizer(unittest.TestCase):
|
|
|
|
def eval_index_accuracy(self, factory_key):
|
|
ds = datasets.SyntheticDataset(32, 1000, 1000, 100)
|
|
index = faiss.index_factory(ds.d, factory_key)
|
|
|
|
index.train(ds.get_train())
|
|
index.add(ds.get_database())
|
|
|
|
inters = []
|
|
for nprobe in 1, 2, 5, 10, 20, 50:
|
|
index.nprobe = nprobe
|
|
D, I = index.search(ds.get_queries(), 10)
|
|
inter = faiss.eval_intersection(I, ds.get_groundtruth(10))
|
|
inters.append(inter)
|
|
|
|
inters = np.array(inters)
|
|
# 1.05: test relaxed for OSX on ARM
|
|
self.assertTrue(np.all(inters[1:] * 1.05 >= inters[:-1]))
|
|
|
|
# do a little I/O test
|
|
index2 = faiss.deserialize_index(faiss.serialize_index(index))
|
|
D2, I2 = index2.search(ds.get_queries(), 10)
|
|
np.testing.assert_array_equal(I2, I)
|
|
np.testing.assert_array_equal(D2, D)
|
|
|
|
return inter
|
|
|
|
def test_index_accuracy(self):
|
|
self.eval_index_accuracy("IVF100,PRQ2x2x5_Nqint8")
|
|
|
|
def test_index_accuracy2(self):
|
|
"""check that the error is in the same ballpark as RQ."""
|
|
inter1 = self.eval_index_accuracy("IVF100,PRQ2x2x5_Nqint8")
|
|
inter2 = self.eval_index_accuracy("IVF100,RQ4x5_Nqint8")
|
|
self.assertGreaterEqual(inter1 * 1.1, inter2)
|
|
|
|
def test_factory(self):
|
|
AQ = faiss.AdditiveQuantizer
|
|
ns, Msub, nbits = 2, 4, 8
|
|
index = faiss.index_factory(64, f"IVF100,PRQ{ns}x{Msub}x{nbits}_Nqint8")
|
|
assert isinstance(index, faiss.IndexIVFProductResidualQuantizer)
|
|
self.assertEqual(index.nlist, 100)
|
|
self.assertEqual(index.prq.nsplits, ns)
|
|
self.assertEqual(index.prq.subquantizer(0).M, Msub)
|
|
self.assertEqual(index.prq.subquantizer(0).nbits.at(0), nbits)
|
|
self.assertEqual(index.prq.search_type, AQ.ST_norm_qint8)
|
|
|
|
code_size = (ns * Msub * nbits + 7) // 8 + 1
|
|
self.assertEqual(index.prq.code_size, code_size)
|