mirror of
https://github.com/facebookresearch/faiss.git
synced 2025-06-03 21:54:02 +08:00
Summary: Pull Request resolved: https://github.com/facebookresearch/faiss/pull/3872 The contrib.torch subdirectory is intended to receive modules in python that are useful for similarity search and that apply to CPU or GPU pytorch tensors. The current version includes CPU clustering on torch tensors. To be added: * implementation of PQ Reviewed By: asadoughi Differential Revision: D62759207 fbshipit-source-id: 87dbaa5083e3f2f4f60526815e22ded4e83e8559
753 lines
25 KiB
Python
753 lines
25 KiB
Python
# Copyright (c) Facebook, Inc. and its affiliates.
|
|
#
|
|
# This source code is licensed under the MIT license found in the
|
|
# LICENSE file in the root directory of this source tree.
|
|
|
|
import faiss
|
|
import unittest
|
|
import numpy as np
|
|
import platform
|
|
import os
|
|
import random
|
|
import shutil
|
|
import tempfile
|
|
|
|
from faiss.contrib import datasets
|
|
from faiss.contrib import inspect_tools
|
|
from faiss.contrib import evaluation
|
|
from faiss.contrib import ivf_tools
|
|
from faiss.contrib import clustering
|
|
from faiss.contrib import big_batch_search
|
|
from faiss.contrib.ondisk import merge_ondisk
|
|
|
|
from common_faiss_tests import get_dataset_2
|
|
from faiss.contrib.exhaustive_search import \
|
|
knn_ground_truth, knn, range_ground_truth, \
|
|
range_search_max_results, exponential_query_iterator
|
|
from contextlib import contextmanager
|
|
|
|
|
|
class TestComputeGT(unittest.TestCase):
|
|
|
|
def do_test_compute_GT(self, metric=faiss.METRIC_L2):
|
|
d = 64
|
|
xt, xb, xq = get_dataset_2(d, 0, 10000, 100)
|
|
|
|
index = faiss.IndexFlat(d, metric)
|
|
index.add(xb)
|
|
Dref, Iref = index.search(xq, 10)
|
|
|
|
# iterator function on the matrix
|
|
|
|
def matrix_iterator(xb, bs):
|
|
for i0 in range(0, xb.shape[0], bs):
|
|
yield xb[i0:i0 + bs]
|
|
|
|
Dnew, Inew = knn_ground_truth(
|
|
xq, matrix_iterator(xb, 1000), 10, metric)
|
|
|
|
np.testing.assert_array_equal(Iref, Inew)
|
|
# decimal = 4 required when run on GPU
|
|
np.testing.assert_almost_equal(Dref, Dnew, decimal=4)
|
|
|
|
def test_compute_GT(self):
|
|
self.do_test_compute_GT()
|
|
|
|
def test_compute_GT_ip(self):
|
|
self.do_test_compute_GT(faiss.METRIC_INNER_PRODUCT)
|
|
|
|
|
|
class TestDatasets(unittest.TestCase):
|
|
"""here we test only the synthetic dataset. Datasets that require
|
|
disk or manifold access are in
|
|
//deeplearning/projects/faiss-forge/test_faiss_datasets/:test_faiss_datasets
|
|
"""
|
|
|
|
def test_synthetic(self):
|
|
ds = datasets.SyntheticDataset(32, 1000, 2000, 10)
|
|
xq = ds.get_queries()
|
|
self.assertEqual(xq.shape, (10, 32))
|
|
xb = ds.get_database()
|
|
self.assertEqual(xb.shape, (2000, 32))
|
|
ds.check_sizes()
|
|
|
|
def test_synthetic_ip(self):
|
|
ds = datasets.SyntheticDataset(32, 1000, 2000, 10, "IP")
|
|
index = faiss.IndexFlatIP(32)
|
|
index.add(ds.get_database())
|
|
np.testing.assert_array_equal(
|
|
ds.get_groundtruth(100),
|
|
index.search(ds.get_queries(), 100)[1]
|
|
)
|
|
|
|
def test_synthetic_iterator(self):
|
|
ds = datasets.SyntheticDataset(32, 1000, 2000, 10)
|
|
xb = ds.get_database()
|
|
xb2 = []
|
|
for xbi in ds.database_iterator():
|
|
xb2.append(xbi)
|
|
xb2 = np.vstack(xb2)
|
|
np.testing.assert_array_equal(xb, xb2)
|
|
|
|
|
|
class TestExhaustiveSearch(unittest.TestCase):
|
|
|
|
def test_knn_cpu(self):
|
|
xb = np.random.rand(200, 32).astype('float32')
|
|
xq = np.random.rand(100, 32).astype('float32')
|
|
|
|
index = faiss.IndexFlatL2(32)
|
|
index.add(xb)
|
|
Dref, Iref = index.search(xq, 10)
|
|
|
|
Dnew, Inew = knn(xq, xb, 10)
|
|
|
|
assert np.all(Inew == Iref)
|
|
assert np.allclose(Dref, Dnew)
|
|
|
|
index = faiss.IndexFlatIP(32)
|
|
index.add(xb)
|
|
Dref, Iref = index.search(xq, 10)
|
|
|
|
Dnew, Inew = knn(xq, xb, 10, metric=faiss.METRIC_INNER_PRODUCT)
|
|
|
|
assert np.all(Inew == Iref)
|
|
assert np.allclose(Dref, Dnew)
|
|
|
|
def do_test_range(self, metric):
|
|
ds = datasets.SyntheticDataset(32, 0, 1000, 10)
|
|
xq = ds.get_queries()
|
|
xb = ds.get_database()
|
|
D, I = faiss.knn(xq, xb, 10, metric=metric)
|
|
threshold = float(D[:, -1].mean())
|
|
|
|
index = faiss.IndexFlat(32, metric)
|
|
index.add(xb)
|
|
ref_lims, ref_D, ref_I = index.range_search(xq, threshold)
|
|
|
|
new_lims, new_D, new_I = range_ground_truth(
|
|
xq, ds.database_iterator(bs=100), threshold, ngpu=0,
|
|
metric_type=metric)
|
|
|
|
evaluation.check_ref_range_results(
|
|
ref_lims, ref_D, ref_I,
|
|
new_lims, new_D, new_I
|
|
)
|
|
|
|
def test_range_L2(self):
|
|
self.do_test_range(faiss.METRIC_L2)
|
|
|
|
def test_range_IP(self):
|
|
self.do_test_range(faiss.METRIC_INNER_PRODUCT)
|
|
|
|
def test_query_iterator(self, metric=faiss.METRIC_L2):
|
|
ds = datasets.SyntheticDataset(32, 0, 1000, 1000)
|
|
xq = ds.get_queries()
|
|
xb = ds.get_database()
|
|
D, I = faiss.knn(xq, xb, 10, metric=metric)
|
|
threshold = float(D[:, -1].mean())
|
|
|
|
index = faiss.IndexFlat(32, metric)
|
|
index.add(xb)
|
|
ref_lims, ref_D, ref_I = index.range_search(xq, threshold)
|
|
|
|
def matrix_iterator(xb, bs):
|
|
for i0 in range(0, xb.shape[0], bs):
|
|
yield xb[i0:i0 + bs]
|
|
|
|
# check repro OK
|
|
_, new_lims, new_D, new_I = range_search_max_results(
|
|
index, matrix_iterator(xq, 100), threshold, max_results=1e10)
|
|
|
|
evaluation.check_ref_range_results(
|
|
ref_lims, ref_D, ref_I,
|
|
new_lims, new_D, new_I
|
|
)
|
|
|
|
max_res = ref_lims[-1] // 2
|
|
|
|
new_threshold, new_lims, new_D, new_I = range_search_max_results(
|
|
index, matrix_iterator(xq, 100), threshold, max_results=max_res)
|
|
|
|
self.assertLessEqual(new_lims[-1], max_res)
|
|
|
|
ref_lims, ref_D, ref_I = index.range_search(xq, new_threshold)
|
|
|
|
evaluation.check_ref_range_results(
|
|
ref_lims, ref_D, ref_I,
|
|
new_lims, new_D, new_I
|
|
)
|
|
|
|
|
|
class TestInspect(unittest.TestCase):
|
|
|
|
def test_LinearTransform(self):
|
|
# training data
|
|
xt = np.random.rand(1000, 20).astype('float32')
|
|
# test data
|
|
x = np.random.rand(10, 20).astype('float32')
|
|
# make the PCA matrix
|
|
pca = faiss.PCAMatrix(20, 10)
|
|
pca.train(xt)
|
|
# apply it to test data
|
|
yref = pca.apply_py(x)
|
|
|
|
A, b = inspect_tools.get_LinearTransform_matrix(pca)
|
|
|
|
# verify
|
|
ynew = x @ A.T + b
|
|
np.testing.assert_array_almost_equal(yref, ynew)
|
|
|
|
def test_IndexFlat(self):
|
|
xb = np.random.rand(13, 20).astype('float32')
|
|
index = faiss.IndexFlatL2(20)
|
|
index.add(xb)
|
|
np.testing.assert_array_equal(
|
|
xb, inspect_tools.get_flat_data(index)
|
|
)
|
|
|
|
def test_make_LT(self):
|
|
rs = np.random.RandomState(123)
|
|
X = rs.rand(13, 20).astype('float32')
|
|
A = rs.rand(5, 20).astype('float32')
|
|
b = rs.rand(5).astype('float32')
|
|
Yref = X @ A.T + b
|
|
lt = inspect_tools.make_LinearTransform_matrix(A, b)
|
|
Ynew = lt.apply(X)
|
|
np.testing.assert_allclose(Yref, Ynew, rtol=1e-06)
|
|
|
|
def test_NSG_neighbors(self):
|
|
# FIXME number of elements to add should be >> 100
|
|
ds = datasets.SyntheticDataset(32, 0, 200, 10)
|
|
index = faiss.index_factory(ds.d, "NSG")
|
|
index.add(ds.get_database())
|
|
neighbors = inspect_tools.get_NSG_neighbors(index.nsg)
|
|
# neighbors should be either valid indexes or -1
|
|
np.testing.assert_array_less(-2, neighbors)
|
|
np.testing.assert_array_less(neighbors, ds.nb)
|
|
|
|
|
|
class TestRangeEval(unittest.TestCase):
|
|
|
|
def test_precision_recall(self):
|
|
Iref = [
|
|
[1, 2, 3],
|
|
[5, 6],
|
|
[],
|
|
[]
|
|
]
|
|
Inew = [
|
|
[1, 2],
|
|
[6, 7],
|
|
[1],
|
|
[]
|
|
]
|
|
|
|
lims_ref = np.cumsum([0] + [len(x) for x in Iref])
|
|
Iref = np.hstack(Iref)
|
|
lims_new = np.cumsum([0] + [len(x) for x in Inew])
|
|
Inew = np.hstack(Inew)
|
|
|
|
precision, recall = evaluation.range_PR(lims_ref, Iref, lims_new, Inew)
|
|
|
|
self.assertEqual(precision, 0.6)
|
|
self.assertEqual(recall, 0.6)
|
|
|
|
def test_PR_multiple(self):
|
|
metric = faiss.METRIC_L2
|
|
ds = datasets.SyntheticDataset(32, 1000, 1000, 10)
|
|
xq = ds.get_queries()
|
|
xb = ds.get_database()
|
|
|
|
# good for ~10k results
|
|
threshold = 15
|
|
|
|
index = faiss.IndexFlat(32, metric)
|
|
index.add(xb)
|
|
ref_lims, ref_D, ref_I = index.range_search(xq, threshold)
|
|
|
|
# now make a slightly suboptimal index
|
|
index2 = faiss.index_factory(32, "PCA16,Flat")
|
|
index2.train(ds.get_train())
|
|
index2.add(xb)
|
|
|
|
# PCA reduces distances so will have more results
|
|
new_lims, new_D, new_I = index2.range_search(xq, threshold)
|
|
|
|
all_thr = np.array([5.0, 10.0, 12.0, 15.0])
|
|
for mode in "overall", "average":
|
|
ref_precisions = np.zeros_like(all_thr)
|
|
ref_recalls = np.zeros_like(all_thr)
|
|
|
|
for i, thr in enumerate(all_thr):
|
|
|
|
lims2, _, I2 = evaluation.filter_range_results(
|
|
new_lims, new_D, new_I, thr)
|
|
|
|
prec, recall = evaluation.range_PR(
|
|
ref_lims, ref_I, lims2, I2, mode=mode)
|
|
|
|
ref_precisions[i] = prec
|
|
ref_recalls[i] = recall
|
|
|
|
precisions, recalls = evaluation.range_PR_multiple_thresholds(
|
|
ref_lims, ref_I,
|
|
new_lims, new_D, new_I, all_thr,
|
|
mode=mode
|
|
)
|
|
|
|
np.testing.assert_array_almost_equal(ref_precisions, precisions)
|
|
np.testing.assert_array_almost_equal(ref_recalls, recalls)
|
|
|
|
|
|
class TestPreassigned(unittest.TestCase):
|
|
|
|
def test_index_pretransformed(self):
|
|
|
|
ds = datasets.SyntheticDataset(128, 2000, 2000, 200)
|
|
xt = ds.get_train()
|
|
xq = ds.get_queries()
|
|
xb = ds.get_database()
|
|
index = faiss.index_factory(128, 'PCA64,IVF64,PQ4np')
|
|
index.train(xt)
|
|
index.add(xb)
|
|
index_downcasted = faiss.extract_index_ivf(index)
|
|
index_downcasted.nprobe = 10
|
|
xq_trans = index.chain.at(0).apply_py(xq)
|
|
D_ref, I_ref = index.search(xq, 4)
|
|
|
|
quantizer = index_downcasted.quantizer
|
|
Dq, Iq = quantizer.search(xq_trans, index_downcasted.nprobe)
|
|
D, I = ivf_tools.search_preassigned(index, xq, 4, Iq, Dq)
|
|
np.testing.assert_almost_equal(D_ref, D, decimal=4)
|
|
np.testing.assert_array_equal(I_ref, I)
|
|
|
|
def test_float(self):
|
|
ds = datasets.SyntheticDataset(128, 2000, 2000, 200)
|
|
|
|
d = ds.d
|
|
xt = ds.get_train()
|
|
xq = ds.get_queries()
|
|
xb = ds.get_database()
|
|
|
|
# define alternative quantizer on the 20 first dims of vectors
|
|
km = faiss.Kmeans(20, 50)
|
|
km.train(xt[:, :20].copy())
|
|
alt_quantizer = km.index
|
|
|
|
index = faiss.index_factory(d, "IVF50,PQ16np")
|
|
index.by_residual = False
|
|
|
|
# (optional) fake coarse quantizer
|
|
fake_centroids = np.zeros((index.nlist, index.d), dtype="float32")
|
|
index.quantizer.add(fake_centroids)
|
|
|
|
# train the PQ part
|
|
index.train(xt)
|
|
|
|
# add elements xb
|
|
a = alt_quantizer.search(xb[:, :20].copy(), 1)[1].ravel()
|
|
ivf_tools.add_preassigned(index, xb, a)
|
|
|
|
# search elements xq, increase nprobe, check 4 first results w/
|
|
# groundtruth
|
|
prev_inter_perf = 0
|
|
for nprobe in 1, 10, 20:
|
|
|
|
index.nprobe = nprobe
|
|
a = alt_quantizer.search(xq[:, :20].copy(), index.nprobe)[1]
|
|
D, I = ivf_tools.search_preassigned(index, xq, 4, a)
|
|
inter_perf = faiss.eval_intersection(
|
|
I, ds.get_groundtruth()[:, :4])
|
|
self.assertTrue(inter_perf >= prev_inter_perf)
|
|
prev_inter_perf = inter_perf
|
|
|
|
# test range search
|
|
|
|
index.nprobe = 20
|
|
|
|
a = alt_quantizer.search(xq[:, :20].copy(), index.nprobe)[1]
|
|
|
|
# just to find a reasonable radius
|
|
D, I = ivf_tools.search_preassigned(index, xq, 4, a)
|
|
radius = D.max() * 1.01
|
|
|
|
lims, DR, IR = ivf_tools.range_search_preassigned(index, xq, radius, a)
|
|
|
|
# with that radius the k-NN results are a subset of the range search
|
|
# results
|
|
for q in range(len(xq)):
|
|
l0, l1 = lims[q], lims[q + 1]
|
|
self.assertTrue(set(I[q]) <= set(IR[l0:l1]))
|
|
|
|
def test_binary(self):
|
|
ds = datasets.SyntheticDataset(128, 2000, 2000, 200)
|
|
|
|
d = ds.d
|
|
xt = ds.get_train()
|
|
xq = ds.get_queries()
|
|
xb = ds.get_database()
|
|
|
|
# define alternative quantizer on the 20 first dims of vectors
|
|
# (will be in float)
|
|
km = faiss.Kmeans(20, 50)
|
|
km.train(xt[:, :20].copy())
|
|
alt_quantizer = km.index
|
|
|
|
binarizer = faiss.index_factory(d, "ITQ,LSHt")
|
|
binarizer.train(xt)
|
|
|
|
xb_bin = binarizer.sa_encode(xb)
|
|
xq_bin = binarizer.sa_encode(xq)
|
|
|
|
index = faiss.index_binary_factory(d, "BIVF200")
|
|
|
|
fake_centroids = np.zeros((index.nlist, index.d // 8), dtype="uint8")
|
|
index.quantizer.add(fake_centroids)
|
|
index.is_trained = True
|
|
|
|
# add elements xb
|
|
a = alt_quantizer.search(xb[:, :20].copy(), 1)[1].ravel()
|
|
ivf_tools.add_preassigned(index, xb_bin, a)
|
|
|
|
# recompute GT in binary
|
|
k = 15
|
|
ib = faiss.IndexBinaryFlat(128)
|
|
ib.add(xb_bin)
|
|
Dgt, Igt = ib.search(xq_bin, k)
|
|
|
|
# search elements xq, increase nprobe, check 4 first results w/
|
|
# groundtruth
|
|
prev_inter_perf = 0
|
|
for nprobe in 1, 10, 20:
|
|
|
|
index.nprobe = nprobe
|
|
a = alt_quantizer.search(xq[:, :20].copy(), index.nprobe)[1]
|
|
D, I = ivf_tools.search_preassigned(index, xq_bin, k, a)
|
|
inter_perf = faiss.eval_intersection(I, Igt)
|
|
self.assertGreaterEqual(inter_perf, prev_inter_perf)
|
|
prev_inter_perf = inter_perf
|
|
|
|
# test range search
|
|
|
|
index.nprobe = 20
|
|
|
|
a = alt_quantizer.search(xq[:, :20].copy(), index.nprobe)[1]
|
|
|
|
# just to find a reasonable radius
|
|
D, I = ivf_tools.search_preassigned(index, xq_bin, 4, a)
|
|
radius = int(D.max() + 1)
|
|
|
|
lims, DR, IR = ivf_tools.range_search_preassigned(
|
|
index, xq_bin, radius, a)
|
|
|
|
# with that radius the k-NN results are a subset of the range
|
|
# search results
|
|
for q in range(len(xq)):
|
|
l0, l1 = lims[q], lims[q + 1]
|
|
self.assertTrue(set(I[q]) <= set(IR[l0:l1]))
|
|
|
|
|
|
class TestRangeSearchMaxResults(unittest.TestCase):
|
|
|
|
def do_test(self, metric_type):
|
|
ds = datasets.SyntheticDataset(32, 0, 1000, 200)
|
|
index = faiss.IndexFlat(ds.d, metric_type)
|
|
index.add(ds.get_database())
|
|
|
|
# find a reasonable radius
|
|
D, _ = index.search(ds.get_queries(), 10)
|
|
radius0 = float(np.median(D[:, -1]))
|
|
|
|
# baseline = search with that radius
|
|
lims_ref, Dref, Iref = index.range_search(ds.get_queries(), radius0)
|
|
|
|
# now see if using just the total number of results, we can get back
|
|
# the same result table
|
|
query_iterator = exponential_query_iterator(ds.get_queries())
|
|
|
|
init_radius = 1e10 if metric_type == faiss.METRIC_L2 else -1e10
|
|
radius1, lims_new, Dnew, Inew = range_search_max_results(
|
|
index, query_iterator, init_radius,
|
|
min_results=Dref.size, clip_to_min=True
|
|
)
|
|
|
|
evaluation.check_ref_range_results(
|
|
lims_ref, Dref, Iref,
|
|
lims_new, Dnew, Inew
|
|
)
|
|
|
|
def test_L2(self):
|
|
self.do_test(faiss.METRIC_L2)
|
|
|
|
def test_IP(self):
|
|
self.do_test(faiss.METRIC_INNER_PRODUCT)
|
|
|
|
def test_binary(self):
|
|
ds = datasets.SyntheticDataset(64, 1000, 1000, 200)
|
|
tobinary = faiss.index_factory(ds.d, "LSHrt")
|
|
tobinary.train(ds.get_train())
|
|
index = faiss.IndexBinaryFlat(ds.d)
|
|
xb = tobinary.sa_encode(ds.get_database())
|
|
xq = tobinary.sa_encode(ds.get_queries())
|
|
index.add(xb)
|
|
|
|
# find a reasonable radius
|
|
D, _ = index.search(xq, 10)
|
|
radius0 = int(np.median(D[:, -1]))
|
|
|
|
# baseline = search with that radius
|
|
lims_ref, Dref, Iref = index.range_search(xq, radius0)
|
|
|
|
# now see if using just the total number of results, we can get back
|
|
# the same result table
|
|
query_iterator = exponential_query_iterator(xq)
|
|
|
|
radius1, lims_new, Dnew, Inew = range_search_max_results(
|
|
index, query_iterator, ds.d // 2,
|
|
min_results=Dref.size, clip_to_min=True
|
|
)
|
|
|
|
evaluation.check_ref_range_results(
|
|
lims_ref, Dref, Iref,
|
|
lims_new, Dnew, Inew
|
|
)
|
|
|
|
|
|
class TestClustering(unittest.TestCase):
|
|
|
|
def test_python_kmeans(self):
|
|
""" Test the python implementation of kmeans """
|
|
ds = datasets.SyntheticDataset(32, 10000, 0, 0)
|
|
x = ds.get_train()
|
|
|
|
# bad distribution to stress-test split code
|
|
xt = x[:10000].copy()
|
|
xt[:5000] = x[0]
|
|
|
|
km_ref = faiss.Kmeans(ds.d, 100, niter=10)
|
|
km_ref.train(xt)
|
|
err = faiss.knn(xt, km_ref.centroids, 1)[0].sum()
|
|
|
|
data = clustering.DatasetAssign(xt)
|
|
centroids = clustering.kmeans(100, data, 10)
|
|
err2 = faiss.knn(xt, centroids, 1)[0].sum()
|
|
|
|
# err=33498.332 err2=33380.477
|
|
self.assertLess(err2, err * 1.1)
|
|
|
|
def test_2level(self):
|
|
" verify that 2-level clustering is not too sub-optimal "
|
|
ds = datasets.SyntheticDataset(32, 10000, 0, 0)
|
|
xt = ds.get_train()
|
|
km_ref = faiss.Kmeans(ds.d, 100)
|
|
km_ref.train(xt)
|
|
err = faiss.knn(xt, km_ref.centroids, 1)[0].sum()
|
|
|
|
centroids2, _ = clustering.two_level_clustering(xt, 10, 100)
|
|
err2 = faiss.knn(xt, centroids2, 1)[0].sum()
|
|
|
|
self.assertLess(err2, err * 1.1)
|
|
|
|
def test_ivf_train_2level(self):
|
|
" check 2-level clustering with IVF training "
|
|
ds = datasets.SyntheticDataset(32, 10000, 1000, 200)
|
|
index = faiss.index_factory(ds.d, "PCA16,IVF100,SQ8")
|
|
faiss.extract_index_ivf(index).nprobe = 10
|
|
index.train(ds.get_train())
|
|
index.add(ds.get_database())
|
|
Dref, Iref = index.search(ds.get_queries(), 1)
|
|
|
|
index = faiss.index_factory(ds.d, "PCA16,IVF100,SQ8")
|
|
faiss.extract_index_ivf(index).nprobe = 10
|
|
clustering.train_ivf_index_with_2level(
|
|
index, ds.get_train(), verbose=True, rebalance=False)
|
|
index.add(ds.get_database())
|
|
Dnew, Inew = index.search(ds.get_queries(), 1)
|
|
|
|
# normally 47 / 200 differences
|
|
ndiff = (Iref != Inew).sum()
|
|
self.assertLess(ndiff, 51)
|
|
|
|
|
|
class TestBigBatchSearch(unittest.TestCase):
|
|
|
|
def do_test(self, factory_string, metric=faiss.METRIC_L2):
|
|
# ds = datasets.SyntheticDataset(32, 2000, 4000, 1000)
|
|
ds = datasets.SyntheticDataset(32, 2000, 400, 500)
|
|
k = 10
|
|
index = faiss.index_factory(ds.d, factory_string, metric)
|
|
assert index.metric_type == metric
|
|
index.train(ds.get_train())
|
|
index.add(ds.get_database())
|
|
index.nprobe = 5
|
|
Dref, Iref = index.search(ds.get_queries(), k)
|
|
# faiss.omp_set_num_threads(1)
|
|
for method in ("pairwise_distances", "knn_function", "index"):
|
|
for threaded in 0, 1, 2:
|
|
Dnew, Inew = big_batch_search.big_batch_search(
|
|
index, ds.get_queries(),
|
|
k, method=method,
|
|
threaded=threaded
|
|
)
|
|
self.assertLess((Inew != Iref).sum() / Iref.size, 1e-4)
|
|
np.testing.assert_almost_equal(Dnew, Dref, decimal=4)
|
|
|
|
def test_Flat(self):
|
|
self.do_test("IVF64,Flat")
|
|
|
|
def test_Flat_IP(self):
|
|
self.do_test("IVF64,Flat", metric=faiss.METRIC_INNER_PRODUCT)
|
|
|
|
def test_PQ(self):
|
|
self.do_test("IVF64,PQ4np")
|
|
|
|
def test_SQ(self):
|
|
self.do_test("IVF64,SQ8")
|
|
|
|
def test_checkpoint(self):
|
|
ds = datasets.SyntheticDataset(32, 2000, 400, 500)
|
|
k = 10
|
|
index = faiss.index_factory(ds.d, "IVF64,SQ8")
|
|
index.train(ds.get_train())
|
|
index.add(ds.get_database())
|
|
index.nprobe = 5
|
|
Dref, Iref = index.search(ds.get_queries(), k)
|
|
|
|
checkpoint = tempfile.mktemp()
|
|
try:
|
|
# First big batch search
|
|
try:
|
|
Dnew, Inew = big_batch_search.big_batch_search(
|
|
index, ds.get_queries(),
|
|
k, method="knn_function",
|
|
threaded=2,
|
|
checkpoint=checkpoint, checkpoint_freq=0.1,
|
|
crash_at=20
|
|
)
|
|
except ZeroDivisionError:
|
|
pass
|
|
else:
|
|
self.assertFalse("should have crashed")
|
|
# Second big batch search
|
|
Dnew, Inew = big_batch_search.big_batch_search(
|
|
index, ds.get_queries(),
|
|
k, method="knn_function",
|
|
threaded=2,
|
|
checkpoint=checkpoint, checkpoint_freq=5
|
|
)
|
|
self.assertLess((Inew != Iref).sum() / Iref.size, 1e-4)
|
|
np.testing.assert_almost_equal(Dnew, Dref, decimal=4)
|
|
finally:
|
|
if os.path.exists(checkpoint):
|
|
os.unlink(checkpoint)
|
|
|
|
|
|
class TestInvlistSort(unittest.TestCase):
|
|
|
|
def test_sort(self):
|
|
""" make sure that the search results do not change
|
|
after sorting the inverted lists """
|
|
ds = datasets.SyntheticDataset(32, 2000, 200, 20)
|
|
index = faiss.index_factory(ds.d, "IVF50,SQ8")
|
|
index.train(ds.get_train())
|
|
index.add(ds.get_database())
|
|
index.nprobe = 5
|
|
Dref, Iref = index.search(ds.get_queries(), 5)
|
|
|
|
ivf_tools.sort_invlists_by_size(index)
|
|
list_sizes = ivf_tools.get_invlist_sizes(index.invlists)
|
|
assert np.all(list_sizes[1:] >= list_sizes[:-1])
|
|
|
|
Dnew, Inew = index.search(ds.get_queries(), 5)
|
|
np.testing.assert_equal(Dnew, Dref)
|
|
np.testing.assert_equal(Inew, Iref)
|
|
|
|
def test_hnsw_permute(self):
|
|
""" make sure HNSW permutation works (useful when used as coarse quantizer) """
|
|
ds = datasets.SyntheticDataset(32, 0, 1000, 50)
|
|
index = faiss.index_factory(ds.d, "HNSW32,Flat")
|
|
index.add(ds.get_database())
|
|
Dref, Iref = index.search(ds.get_queries(), 5)
|
|
rs = np.random.RandomState(1234)
|
|
perm = rs.permutation(index.ntotal)
|
|
index.permute_entries(perm)
|
|
Dnew, Inew = index.search(ds.get_queries(), 5)
|
|
np.testing.assert_equal(Dnew, Dref)
|
|
Inew_remap = perm[Inew]
|
|
np.testing.assert_equal(Inew_remap, Iref)
|
|
|
|
|
|
class TestCodeSet(unittest.TestCase):
|
|
|
|
def test_code_set(self):
|
|
""" CodeSet and np.unique should produce the same output """
|
|
d = 8
|
|
n = 1000 # > 256 and using only 0 or 1 so there must be duplicates
|
|
codes = np.random.randint(0, 2, (n, d), dtype=np.uint8)
|
|
s = faiss.CodeSet(d)
|
|
inserted = s.insert(codes)
|
|
np.testing.assert_equal(
|
|
np.sort(np.unique(codes, axis=0), axis=None),
|
|
np.sort(codes[inserted], axis=None))
|
|
|
|
|
|
@unittest.skipIf(platform.system() == 'Windows',
|
|
'OnDiskInvertedLists is unsupported on Windows.')
|
|
class TestMerge(unittest.TestCase):
|
|
@contextmanager
|
|
def temp_directory(self):
|
|
temp_dir = tempfile.mkdtemp()
|
|
try:
|
|
yield temp_dir
|
|
finally:
|
|
shutil.rmtree(temp_dir)
|
|
|
|
def do_test_ondisk_merge(self, shift_ids=False):
|
|
with self.temp_directory() as tmpdir:
|
|
# only train and add index to disk without adding elements.
|
|
# this will create empty inverted lists.
|
|
ds = datasets.SyntheticDataset(32, 2000, 200, 20)
|
|
index = faiss.index_factory(ds.d, "IVF32,Flat")
|
|
index.train(ds.get_train())
|
|
faiss.write_index(index, tmpdir + "/trained.index")
|
|
|
|
# create 4 shards and add elements to them
|
|
ns = 4 # number of shards
|
|
|
|
for bno in range(ns):
|
|
index = faiss.read_index(tmpdir + "/trained.index")
|
|
i0, i1 = int(bno * ds.nb / ns), int((bno + 1) * ds.nb / ns)
|
|
if shift_ids:
|
|
index.add_with_ids(ds.xb[i0:i1], np.arange(0, ds.nb / ns))
|
|
else:
|
|
index.add_with_ids(ds.xb[i0:i1], np.arange(i0, i1))
|
|
faiss.write_index(index, tmpdir + "/block_%d.index" % bno)
|
|
|
|
# construct the output index and merge them on disk
|
|
index = faiss.read_index(tmpdir + "/trained.index")
|
|
block_fnames = [tmpdir + "/block_%d.index" % bno for bno in range(4)]
|
|
|
|
merge_ondisk(
|
|
index, block_fnames, tmpdir + "/merged_index.ivfdata", shift_ids
|
|
)
|
|
faiss.write_index(index, tmpdir + "/populated.index")
|
|
|
|
# perform a search from index on disk
|
|
index = faiss.read_index(tmpdir + "/populated.index")
|
|
index.nprobe = 5
|
|
D, I = index.search(ds.xq, 5)
|
|
|
|
# ground-truth
|
|
gtI = ds.get_groundtruth(5)
|
|
|
|
recall_at_1 = (I[:, :1] == gtI[:, :1]).sum() / float(ds.xq.shape[0])
|
|
self.assertGreaterEqual(recall_at_1, 0.5)
|
|
|
|
def test_ondisk_merge(self):
|
|
self.do_test_ondisk_merge()
|
|
|
|
def test_ondisk_merge_with_shift_ids(self):
|
|
# verified that recall is same for test_ondisk_merge and
|
|
self.do_test_ondisk_merge(True)
|