faiss/benchs/bench_vector_ops.py
Michael Norris eff0898a13 Enable linting: lint config changes plus arc lint command (#3966)
Summary:
Pull Request resolved: https://github.com/facebookresearch/faiss/pull/3966

This actually enables the linting.

Manual changes:
- tools/arcanist/lint/fbsource-licenselint-config.toml
- tools/arcanist/lint/fbsource-lint-engine.toml

Automated changes:
`arc lint --apply-patches --take LICENSELINT --paths-cmd 'hg files faiss'`

Reviewed By: asadoughi

Differential Revision: D64484165

fbshipit-source-id: 4f2f6e953c94ef6ebfea8a5ae035ccfbea65ed04
2024-10-22 09:46:48 -07:00

85 lines
2.1 KiB
Python

#! /usr/bin/env python2
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from __future__ import print_function
import numpy as np
import faiss
import time
swig_ptr = faiss.swig_ptr
if False:
a = np.arange(10, 14).astype('float32')
b = np.arange(20, 24).astype('float32')
faiss.fvec_inner_product (swig_ptr(a), swig_ptr(b), 4)
1/0
xd = 100
yd = 1000000
np.random.seed(1234)
faiss.omp_set_num_threads(1)
print('xd=%d yd=%d' % (xd, yd))
print('Running inner products test..')
for d in 3, 4, 12, 36, 64:
x = faiss.rand(xd * d).reshape(xd, d)
y = faiss.rand(yd * d).reshape(yd, d)
distances = np.empty((xd, yd), dtype='float32')
t0 = time.time()
for i in range(xd):
faiss.fvec_inner_products_ny(swig_ptr(distances[i]),
swig_ptr(x[i]),
swig_ptr(y),
d, yd)
t1 = time.time()
# sparse verification
ntry = 100
num, denom = 0, 0
for t in range(ntry):
xi = np.random.randint(xd)
yi = np.random.randint(yd)
num += abs(distances[xi, yi] - np.dot(x[xi], y[yi]))
denom += abs(distances[xi, yi])
print('d=%d t=%.3f s diff=%g' % (d, t1 - t0, num / denom))
print('Running L2sqr test..')
for d in 3, 4, 12, 36, 64:
x = faiss.rand(xd * d).reshape(xd, d)
y = faiss.rand(yd * d).reshape(yd, d)
distances = np.empty((xd, yd), dtype='float32')
t0 = time.time()
for i in range(xd):
faiss.fvec_L2sqr_ny(swig_ptr(distances[i]),
swig_ptr(x[i]),
swig_ptr(y),
d, yd)
t1 = time.time()
# sparse verification
ntry = 100
num, denom = 0, 0
for t in range(ntry):
xi = np.random.randint(xd)
yi = np.random.randint(yd)
num += abs(distances[xi, yi] - np.sum((x[xi] - y[yi]) ** 2))
denom += abs(distances[xi, yi])
print('d=%d t=%.3f s diff=%g' % (d, t1 - t0, num / denom))