1445 lines
37 KiB
C++
1445 lines
37 KiB
C++
/**
|
|
* Copyright (c) 2015-present, Facebook, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This source code is licensed under the BSD+Patents license found in the
|
|
* LICENSE file in the root directory of this source tree.
|
|
*/
|
|
|
|
// -*- c++ -*-
|
|
|
|
#include "IndexHNSW.h"
|
|
|
|
|
|
#include <cstdlib>
|
|
#include <cassert>
|
|
#include <cstring>
|
|
#include <cstdio>
|
|
#include <cmath>
|
|
#include <omp.h>
|
|
|
|
#include <unordered_set>
|
|
#include <queue>
|
|
|
|
#include <sys/types.h>
|
|
#include <sys/stat.h>
|
|
#include <unistd.h>
|
|
#include <stdint.h>
|
|
|
|
#ifdef __SSE__
|
|
#include <immintrin.h>
|
|
#endif
|
|
|
|
#include "utils.h"
|
|
#include "Heap.h"
|
|
#include "FaissAssert.h"
|
|
#include "IndexFlat.h"
|
|
#include "IndexIVFPQ.h"
|
|
#include "AuxIndexStructures.h"
|
|
|
|
|
|
extern "C" {
|
|
|
|
/* declare BLAS functions, see http://www.netlib.org/clapack/cblas/ */
|
|
|
|
int sgemm_ (const char *transa, const char *transb, FINTEGER *m, FINTEGER *
|
|
n, FINTEGER *k, const float *alpha, const float *a,
|
|
FINTEGER *lda, const float *b, FINTEGER *
|
|
ldb, float *beta, float *c, FINTEGER *ldc);
|
|
|
|
}
|
|
|
|
namespace faiss {
|
|
|
|
using idx_t = Index::idx_t;
|
|
using MinimaxHeap = HNSW::MinimaxHeap;
|
|
using storage_idx_t = HNSW::storage_idx_t;
|
|
using NodeDistCloser = HNSW::NodeDistCloser;
|
|
using NodeDistFarther = HNSW::NodeDistFarther;
|
|
|
|
HNSWStats hnsw_stats;
|
|
|
|
/**************************************************************
|
|
* add / search blocks of descriptors
|
|
**************************************************************/
|
|
|
|
namespace {
|
|
|
|
|
|
void hnsw_add_vertices(IndexHNSW &index_hnsw,
|
|
size_t n0,
|
|
size_t n, const float *x,
|
|
bool verbose,
|
|
bool preset_levels = false) {
|
|
size_t d = index_hnsw.d;
|
|
HNSW & hnsw = index_hnsw.hnsw;
|
|
size_t ntotal = n0 + n;
|
|
double t0 = getmillisecs();
|
|
if (verbose) {
|
|
printf("hnsw_add_vertices: adding %ld elements on top of %ld "
|
|
"(preset_levels=%d)\n",
|
|
n, n0, int(preset_levels));
|
|
}
|
|
|
|
if (n == 0) {
|
|
return;
|
|
}
|
|
|
|
int max_level = hnsw.prepare_level_tab(n, preset_levels);
|
|
|
|
if (verbose) {
|
|
printf(" max_level = %d\n", max_level);
|
|
}
|
|
|
|
std::vector<omp_lock_t> locks(ntotal);
|
|
for(int i = 0; i < ntotal; i++)
|
|
omp_init_lock(&locks[i]);
|
|
|
|
// add vectors from highest to lowest level
|
|
std::vector<int> hist;
|
|
std::vector<int> order(n);
|
|
|
|
{ // make buckets with vectors of the same level
|
|
|
|
// build histogram
|
|
for (int i = 0; i < n; i++) {
|
|
storage_idx_t pt_id = i + n0;
|
|
int pt_level = hnsw.levels[pt_id] - 1;
|
|
while (pt_level >= hist.size())
|
|
hist.push_back(0);
|
|
hist[pt_level] ++;
|
|
}
|
|
|
|
// accumulate
|
|
std::vector<int> offsets(hist.size() + 1, 0);
|
|
for (int i = 0; i < hist.size() - 1; i++) {
|
|
offsets[i + 1] = offsets[i] + hist[i];
|
|
}
|
|
|
|
// bucket sort
|
|
for (int i = 0; i < n; i++) {
|
|
storage_idx_t pt_id = i + n0;
|
|
int pt_level = hnsw.levels[pt_id] - 1;
|
|
order[offsets[pt_level]++] = pt_id;
|
|
}
|
|
}
|
|
|
|
|
|
idx_t check_period = InterruptCallback::get_period_hint
|
|
(max_level * index_hnsw.d * hnsw.efConstruction);
|
|
|
|
{ // perform add
|
|
RandomGenerator rng2(789);
|
|
|
|
int i1 = n;
|
|
|
|
for (int pt_level = hist.size() - 1; pt_level >= 0; pt_level--) {
|
|
int i0 = i1 - hist[pt_level];
|
|
|
|
if (verbose) {
|
|
printf("Adding %d elements at level %d\n",
|
|
i1 - i0, pt_level);
|
|
}
|
|
|
|
// random permutation to get rid of dataset order bias
|
|
for (int j = i0; j < i1; j++)
|
|
std::swap(order[j], order[j + rng2.rand_int(i1 - j)]);
|
|
|
|
bool interrupt = false;
|
|
|
|
#pragma omp parallel if(i1 > i0 + 100)
|
|
{
|
|
VisitedTable vt (ntotal);
|
|
|
|
DistanceComputer *dis = index_hnsw.get_distance_computer();
|
|
ScopeDeleter1<DistanceComputer> del(dis);
|
|
int prev_display = verbose && omp_get_thread_num() == 0 ? 0 : -1;
|
|
size_t counter = 0;
|
|
|
|
#pragma omp for schedule(dynamic)
|
|
for (int i = i0; i < i1; i++) {
|
|
storage_idx_t pt_id = order[i];
|
|
dis->set_query (x + (pt_id - n0) * d);
|
|
|
|
// cannot break
|
|
if (interrupt) {
|
|
continue;
|
|
}
|
|
|
|
hnsw.add_with_locks(*dis, pt_level, pt_id, locks, vt);
|
|
|
|
if (prev_display >= 0 && i - i0 > prev_display + 10000) {
|
|
prev_display = i - i0;
|
|
printf(" %d / %d\r", i - i0, i1 - i0);
|
|
fflush(stdout);
|
|
}
|
|
|
|
if (counter % check_period == 0) {
|
|
#pragma omp critical
|
|
{
|
|
if (InterruptCallback::is_interrupted ()) {
|
|
interrupt = true;
|
|
}
|
|
}
|
|
}
|
|
counter++;
|
|
}
|
|
|
|
}
|
|
if (interrupt) {
|
|
FAISS_THROW_MSG ("computation interrupted");
|
|
}
|
|
i1 = i0;
|
|
}
|
|
FAISS_ASSERT(i1 == 0);
|
|
}
|
|
if (verbose) {
|
|
printf("Done in %.3f ms\n", getmillisecs() - t0);
|
|
}
|
|
|
|
for(int i = 0; i < ntotal; i++) {
|
|
omp_destroy_lock(&locks[i]);
|
|
}
|
|
}
|
|
|
|
|
|
} // namespace
|
|
|
|
|
|
|
|
|
|
/**************************************************************
|
|
* IndexHNSW implementation
|
|
**************************************************************/
|
|
|
|
IndexHNSW::IndexHNSW(int d, int M):
|
|
Index(d, METRIC_L2),
|
|
hnsw(M),
|
|
own_fields(false),
|
|
storage(nullptr),
|
|
reconstruct_from_neighbors(nullptr)
|
|
{}
|
|
|
|
IndexHNSW::IndexHNSW(Index *storage, int M):
|
|
Index(storage->d, METRIC_L2),
|
|
hnsw(M),
|
|
own_fields(false),
|
|
storage(storage),
|
|
reconstruct_from_neighbors(nullptr)
|
|
{}
|
|
|
|
IndexHNSW::~IndexHNSW() {
|
|
if (own_fields) {
|
|
delete storage;
|
|
}
|
|
}
|
|
|
|
void IndexHNSW::train(idx_t n, const float* x)
|
|
{
|
|
// hnsw structure does not require training
|
|
storage->train (n, x);
|
|
is_trained = true;
|
|
}
|
|
|
|
void IndexHNSW::search (idx_t n, const float *x, idx_t k,
|
|
float *distances, idx_t *labels) const
|
|
|
|
{
|
|
size_t nreorder = 0;
|
|
|
|
idx_t check_period = InterruptCallback::get_period_hint (
|
|
hnsw.max_level * d * hnsw.efSearch);
|
|
|
|
for (idx_t i0 = 0; i0 < n; i0 += check_period) {
|
|
idx_t i1 = std::min(i0 + check_period, n);
|
|
|
|
#pragma omp parallel reduction(+ : nreorder)
|
|
{
|
|
VisitedTable vt (ntotal);
|
|
DistanceComputer *dis = get_distance_computer();
|
|
ScopeDeleter1<DistanceComputer> del(dis);
|
|
|
|
#pragma omp for
|
|
for(idx_t i = i0; i < i1; i++) {
|
|
idx_t * idxi = labels + i * k;
|
|
float * simi = distances + i * k;
|
|
dis->set_query(x + i * d);
|
|
|
|
maxheap_heapify (k, simi, idxi);
|
|
hnsw.search(*dis, k, idxi, simi, vt);
|
|
|
|
maxheap_reorder (k, simi, idxi);
|
|
|
|
if (reconstruct_from_neighbors &&
|
|
reconstruct_from_neighbors->k_reorder != 0) {
|
|
int k_reorder = reconstruct_from_neighbors->k_reorder;
|
|
if (k_reorder == -1 || k_reorder > k) k_reorder = k;
|
|
|
|
nreorder += reconstruct_from_neighbors->compute_distances(
|
|
k_reorder, idxi, x + i * d, simi);
|
|
|
|
// sort top k_reorder
|
|
maxheap_heapify (k_reorder, simi, idxi, simi, idxi, k_reorder);
|
|
maxheap_reorder (k_reorder, simi, idxi);
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
InterruptCallback::check ();
|
|
}
|
|
hnsw_stats.nreorder += nreorder;
|
|
}
|
|
|
|
|
|
void IndexHNSW::add(idx_t n, const float *x)
|
|
{
|
|
FAISS_THROW_IF_NOT(is_trained);
|
|
int n0 = ntotal;
|
|
storage->add(n, x);
|
|
ntotal = storage->ntotal;
|
|
|
|
hnsw_add_vertices (*this, n0, n, x, verbose,
|
|
hnsw.levels.size() == ntotal);
|
|
}
|
|
|
|
void IndexHNSW::reset()
|
|
{
|
|
hnsw.reset();
|
|
storage->reset();
|
|
ntotal = 0;
|
|
}
|
|
|
|
void IndexHNSW::reconstruct (idx_t key, float* recons) const
|
|
{
|
|
storage->reconstruct(key, recons);
|
|
}
|
|
|
|
void IndexHNSW::shrink_level_0_neighbors(int new_size)
|
|
{
|
|
#pragma omp parallel
|
|
{
|
|
DistanceComputer *dis = get_distance_computer();
|
|
ScopeDeleter1<DistanceComputer> del(dis);
|
|
|
|
#pragma omp for
|
|
for (idx_t i = 0; i < ntotal; i++) {
|
|
|
|
size_t begin, end;
|
|
hnsw.neighbor_range(i, 0, &begin, &end);
|
|
|
|
std::priority_queue<NodeDistFarther> initial_list;
|
|
|
|
for (size_t j = begin; j < end; j++) {
|
|
int v1 = hnsw.neighbors[j];
|
|
if (v1 < 0) break;
|
|
initial_list.emplace(dis->symmetric_dis(i, v1), v1);
|
|
|
|
// initial_list.emplace(qdis(v1), v1);
|
|
}
|
|
|
|
std::vector<NodeDistFarther> shrunk_list;
|
|
HNSW::shrink_neighbor_list(*dis, initial_list,
|
|
shrunk_list, new_size);
|
|
|
|
for (size_t j = begin; j < end; j++) {
|
|
if (j - begin < shrunk_list.size())
|
|
hnsw.neighbors[j] = shrunk_list[j - begin].id;
|
|
else
|
|
hnsw.neighbors[j] = -1;
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
void IndexHNSW::search_level_0(
|
|
idx_t n, const float *x, idx_t k,
|
|
const storage_idx_t *nearest, const float *nearest_d,
|
|
float *distances, idx_t *labels, int nprobe,
|
|
int search_type) const
|
|
{
|
|
|
|
storage_idx_t ntotal = hnsw.levels.size();
|
|
#pragma omp parallel
|
|
{
|
|
DistanceComputer *qdis = get_distance_computer();
|
|
ScopeDeleter1<DistanceComputer> del(qdis);
|
|
|
|
VisitedTable vt (ntotal);
|
|
|
|
#pragma omp for
|
|
for(idx_t i = 0; i < n; i++) {
|
|
idx_t * idxi = labels + i * k;
|
|
float * simi = distances + i * k;
|
|
|
|
qdis->set_query(x + i * d);
|
|
maxheap_heapify (k, simi, idxi);
|
|
|
|
if (search_type == 1) {
|
|
|
|
int nres = 0;
|
|
|
|
for(int j = 0; j < nprobe; j++) {
|
|
storage_idx_t cj = nearest[i * nprobe + j];
|
|
|
|
if (cj < 0) break;
|
|
|
|
if (vt.get(cj)) continue;
|
|
|
|
int candidates_size = std::max(hnsw.efSearch, int(k));
|
|
MinimaxHeap candidates(candidates_size);
|
|
|
|
candidates.push(cj, nearest_d[i * nprobe + j]);
|
|
|
|
nres = hnsw.search_from_candidates(
|
|
*qdis, k, idxi, simi,
|
|
candidates, vt, 0, nres
|
|
);
|
|
}
|
|
} else if (search_type == 2) {
|
|
|
|
int candidates_size = std::max(hnsw.efSearch, int(k));
|
|
candidates_size = std::max(candidates_size, nprobe);
|
|
|
|
MinimaxHeap candidates(candidates_size);
|
|
for(int j = 0; j < nprobe; j++) {
|
|
storage_idx_t cj = nearest[i * nprobe + j];
|
|
|
|
if (cj < 0) break;
|
|
candidates.push(cj, nearest_d[i * nprobe + j]);
|
|
}
|
|
hnsw.search_from_candidates(
|
|
*qdis, k, idxi, simi,
|
|
candidates, vt, 0
|
|
);
|
|
|
|
}
|
|
vt.advance();
|
|
|
|
maxheap_reorder (k, simi, idxi);
|
|
|
|
}
|
|
}
|
|
|
|
|
|
}
|
|
|
|
void IndexHNSW::init_level_0_from_knngraph(
|
|
int k, const float *D, const idx_t *I)
|
|
{
|
|
int dest_size = hnsw.nb_neighbors (0);
|
|
|
|
#pragma omp parallel for
|
|
for (idx_t i = 0; i < ntotal; i++) {
|
|
DistanceComputer *qdis = get_distance_computer();
|
|
float vec[d];
|
|
storage->reconstruct(i, vec);
|
|
qdis->set_query(vec);
|
|
|
|
std::priority_queue<NodeDistFarther> initial_list;
|
|
|
|
for (size_t j = 0; j < k; j++) {
|
|
int v1 = I[i * k + j];
|
|
if (v1 == i) continue;
|
|
if (v1 < 0) break;
|
|
initial_list.emplace(D[i * k + j], v1);
|
|
}
|
|
|
|
std::vector<NodeDistFarther> shrunk_list;
|
|
HNSW::shrink_neighbor_list(*qdis, initial_list, shrunk_list, dest_size);
|
|
|
|
size_t begin, end;
|
|
hnsw.neighbor_range(i, 0, &begin, &end);
|
|
|
|
for (size_t j = begin; j < end; j++) {
|
|
if (j - begin < shrunk_list.size())
|
|
hnsw.neighbors[j] = shrunk_list[j - begin].id;
|
|
else
|
|
hnsw.neighbors[j] = -1;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
void IndexHNSW::init_level_0_from_entry_points(
|
|
int n, const storage_idx_t *points,
|
|
const storage_idx_t *nearests)
|
|
{
|
|
|
|
std::vector<omp_lock_t> locks(ntotal);
|
|
for(int i = 0; i < ntotal; i++)
|
|
omp_init_lock(&locks[i]);
|
|
|
|
#pragma omp parallel
|
|
{
|
|
VisitedTable vt (ntotal);
|
|
|
|
DistanceComputer *dis = get_distance_computer();
|
|
ScopeDeleter1<DistanceComputer> del(dis);
|
|
float vec[storage->d];
|
|
|
|
#pragma omp for schedule(dynamic)
|
|
for (int i = 0; i < n; i++) {
|
|
storage_idx_t pt_id = points[i];
|
|
storage_idx_t nearest = nearests[i];
|
|
storage->reconstruct (pt_id, vec);
|
|
dis->set_query (vec);
|
|
|
|
hnsw.add_links_starting_from(*dis, pt_id,
|
|
nearest, (*dis)(nearest),
|
|
0, locks.data(), vt);
|
|
|
|
if (verbose && i % 10000 == 0) {
|
|
printf(" %d / %d\r", i, n);
|
|
fflush(stdout);
|
|
}
|
|
}
|
|
}
|
|
if (verbose) {
|
|
printf("\n");
|
|
}
|
|
|
|
for(int i = 0; i < ntotal; i++)
|
|
omp_destroy_lock(&locks[i]);
|
|
}
|
|
|
|
void IndexHNSW::reorder_links()
|
|
{
|
|
int M = hnsw.nb_neighbors(0);
|
|
|
|
#pragma omp parallel
|
|
{
|
|
std::vector<float> distances (M);
|
|
std::vector<size_t> order (M);
|
|
std::vector<storage_idx_t> tmp (M);
|
|
DistanceComputer *dis = get_distance_computer();
|
|
ScopeDeleter1<DistanceComputer> del(dis);
|
|
|
|
#pragma omp for
|
|
for(storage_idx_t i = 0; i < ntotal; i++) {
|
|
|
|
size_t begin, end;
|
|
hnsw.neighbor_range(i, 0, &begin, &end);
|
|
|
|
for (size_t j = begin; j < end; j++) {
|
|
storage_idx_t nj = hnsw.neighbors[j];
|
|
if (nj < 0) {
|
|
end = j;
|
|
break;
|
|
}
|
|
distances[j - begin] = dis->symmetric_dis(i, nj);
|
|
tmp [j - begin] = nj;
|
|
}
|
|
|
|
fvec_argsort (end - begin, distances.data(), order.data());
|
|
for (size_t j = begin; j < end; j++) {
|
|
hnsw.neighbors[j] = tmp[order[j - begin]];
|
|
}
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
|
|
void IndexHNSW::link_singletons()
|
|
{
|
|
printf("search for singletons\n");
|
|
|
|
std::vector<bool> seen(ntotal);
|
|
|
|
for (size_t i = 0; i < ntotal; i++) {
|
|
size_t begin, end;
|
|
hnsw.neighbor_range(i, 0, &begin, &end);
|
|
for (size_t j = begin; j < end; j++) {
|
|
storage_idx_t ni = hnsw.neighbors[j];
|
|
if (ni >= 0) seen[ni] = true;
|
|
}
|
|
}
|
|
|
|
int n_sing = 0, n_sing_l1 = 0;
|
|
std::vector<storage_idx_t> singletons;
|
|
for (storage_idx_t i = 0; i < ntotal; i++) {
|
|
if (!seen[i]) {
|
|
singletons.push_back(i);
|
|
n_sing++;
|
|
if (hnsw.levels[i] > 1)
|
|
n_sing_l1++;
|
|
}
|
|
}
|
|
|
|
printf(" Found %d / %ld singletons (%d appear in a level above)\n",
|
|
n_sing, ntotal, n_sing_l1);
|
|
|
|
std::vector<float>recons(singletons.size() * d);
|
|
for (int i = 0; i < singletons.size(); i++) {
|
|
|
|
FAISS_ASSERT(!"not implemented");
|
|
|
|
}
|
|
|
|
|
|
}
|
|
|
|
|
|
namespace {
|
|
|
|
|
|
// storage that explicitly reconstructs vectors before computing distances
|
|
struct GenericDistanceComputer: DistanceComputer {
|
|
size_t d;
|
|
const Index & storage;
|
|
std::vector<float> buf;
|
|
const float *q;
|
|
|
|
GenericDistanceComputer(const Index & storage): storage(storage)
|
|
{
|
|
d = storage.d;
|
|
buf.resize(d * 2);
|
|
}
|
|
|
|
float operator () (idx_t i) override
|
|
{
|
|
storage.reconstruct(i, buf.data());
|
|
return fvec_L2sqr(q, buf.data(), d);
|
|
}
|
|
|
|
float symmetric_dis(idx_t i, idx_t j) override
|
|
{
|
|
storage.reconstruct(i, buf.data());
|
|
storage.reconstruct(j, buf.data() + d);
|
|
return fvec_L2sqr(buf.data() + d, buf.data(), d);
|
|
}
|
|
|
|
void set_query(const float *x) override {
|
|
q = x;
|
|
}
|
|
|
|
|
|
};
|
|
|
|
|
|
} // namespace
|
|
|
|
DistanceComputer * IndexHNSW::get_distance_computer () const
|
|
{
|
|
return new GenericDistanceComputer (*storage);
|
|
}
|
|
|
|
|
|
/**************************************************************
|
|
* ReconstructFromNeighbors implementation
|
|
**************************************************************/
|
|
|
|
|
|
ReconstructFromNeighbors::ReconstructFromNeighbors(
|
|
const IndexHNSW & index, size_t k, size_t nsq):
|
|
index(index), k(k), nsq(nsq) {
|
|
M = index.hnsw.nb_neighbors(0);
|
|
FAISS_ASSERT(k <= 256);
|
|
code_size = k == 1 ? 0 : nsq;
|
|
ntotal = 0;
|
|
d = index.d;
|
|
FAISS_ASSERT(d % nsq == 0);
|
|
dsub = d / nsq;
|
|
k_reorder = -1;
|
|
}
|
|
|
|
void ReconstructFromNeighbors::reconstruct(storage_idx_t i, float *x, float *tmp) const
|
|
{
|
|
|
|
|
|
const HNSW & hnsw = index.hnsw;
|
|
size_t begin, end;
|
|
hnsw.neighbor_range(i, 0, &begin, &end);
|
|
|
|
if (k == 1 || nsq == 1) {
|
|
const float * beta;
|
|
if (k == 1) {
|
|
beta = codebook.data();
|
|
} else {
|
|
int idx = codes[i];
|
|
beta = codebook.data() + idx * (M + 1);
|
|
}
|
|
|
|
float w0 = beta[0]; // weight of image itself
|
|
index.storage->reconstruct(i, tmp);
|
|
|
|
for (int l = 0; l < d; l++)
|
|
x[l] = w0 * tmp[l];
|
|
|
|
for (size_t j = begin; j < end; j++) {
|
|
|
|
storage_idx_t ji = hnsw.neighbors[j];
|
|
if (ji < 0) ji = i;
|
|
float w = beta[j - begin + 1];
|
|
index.storage->reconstruct(ji, tmp);
|
|
for (int l = 0; l < d; l++)
|
|
x[l] += w * tmp[l];
|
|
}
|
|
} else if (nsq == 2) {
|
|
int idx0 = codes[2 * i];
|
|
int idx1 = codes[2 * i + 1];
|
|
|
|
const float *beta0 = codebook.data() + idx0 * (M + 1);
|
|
const float *beta1 = codebook.data() + (idx1 + k) * (M + 1);
|
|
|
|
index.storage->reconstruct(i, tmp);
|
|
|
|
float w0;
|
|
|
|
w0 = beta0[0];
|
|
for (int l = 0; l < dsub; l++)
|
|
x[l] = w0 * tmp[l];
|
|
|
|
w0 = beta1[0];
|
|
for (int l = dsub; l < d; l++)
|
|
x[l] = w0 * tmp[l];
|
|
|
|
for (size_t j = begin; j < end; j++) {
|
|
storage_idx_t ji = hnsw.neighbors[j];
|
|
if (ji < 0) ji = i;
|
|
index.storage->reconstruct(ji, tmp);
|
|
float w;
|
|
w = beta0[j - begin + 1];
|
|
for (int l = 0; l < dsub; l++)
|
|
x[l] += w * tmp[l];
|
|
|
|
w = beta1[j - begin + 1];
|
|
for (int l = dsub; l < d; l++)
|
|
x[l] += w * tmp[l];
|
|
}
|
|
} else {
|
|
const float *betas[nsq];
|
|
{
|
|
const float *b = codebook.data();
|
|
const uint8_t *c = &codes[i * code_size];
|
|
for (int sq = 0; sq < nsq; sq++) {
|
|
betas[sq] = b + (*c++) * (M + 1);
|
|
b += (M + 1) * k;
|
|
}
|
|
}
|
|
|
|
index.storage->reconstruct(i, tmp);
|
|
{
|
|
int d0 = 0;
|
|
for (int sq = 0; sq < nsq; sq++) {
|
|
float w = *(betas[sq]++);
|
|
int d1 = d0 + dsub;
|
|
for (int l = d0; l < d1; l++) {
|
|
x[l] = w * tmp[l];
|
|
}
|
|
d0 = d1;
|
|
}
|
|
}
|
|
|
|
for (size_t j = begin; j < end; j++) {
|
|
storage_idx_t ji = hnsw.neighbors[j];
|
|
if (ji < 0) ji = i;
|
|
|
|
index.storage->reconstruct(ji, tmp);
|
|
int d0 = 0;
|
|
for (int sq = 0; sq < nsq; sq++) {
|
|
float w = *(betas[sq]++);
|
|
int d1 = d0 + dsub;
|
|
for (int l = d0; l < d1; l++) {
|
|
x[l] += w * tmp[l];
|
|
}
|
|
d0 = d1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void ReconstructFromNeighbors::reconstruct_n(storage_idx_t n0,
|
|
storage_idx_t ni,
|
|
float *x) const
|
|
{
|
|
#pragma omp parallel
|
|
{
|
|
std::vector<float> tmp(index.d);
|
|
#pragma omp for
|
|
for (storage_idx_t i = 0; i < ni; i++) {
|
|
reconstruct(n0 + i, x + i * index.d, tmp.data());
|
|
}
|
|
}
|
|
}
|
|
|
|
size_t ReconstructFromNeighbors::compute_distances(
|
|
size_t n, const idx_t *shortlist,
|
|
const float *query, float *distances) const
|
|
{
|
|
std::vector<float> tmp(2 * index.d);
|
|
size_t ncomp = 0;
|
|
for (int i = 0; i < n; i++) {
|
|
if (shortlist[i] < 0) break;
|
|
reconstruct(shortlist[i], tmp.data(), tmp.data() + index.d);
|
|
distances[i] = fvec_L2sqr(query, tmp.data(), index.d);
|
|
ncomp++;
|
|
}
|
|
return ncomp;
|
|
}
|
|
|
|
void ReconstructFromNeighbors::get_neighbor_table(storage_idx_t i, float *tmp1) const
|
|
{
|
|
const HNSW & hnsw = index.hnsw;
|
|
size_t begin, end;
|
|
hnsw.neighbor_range(i, 0, &begin, &end);
|
|
size_t d = index.d;
|
|
|
|
index.storage->reconstruct(i, tmp1);
|
|
|
|
for (size_t j = begin; j < end; j++) {
|
|
storage_idx_t ji = hnsw.neighbors[j];
|
|
if (ji < 0) ji = i;
|
|
index.storage->reconstruct(ji, tmp1 + (j - begin + 1) * d);
|
|
}
|
|
|
|
}
|
|
|
|
|
|
/// called by add_codes
|
|
void ReconstructFromNeighbors::estimate_code(
|
|
const float *x, storage_idx_t i, uint8_t *code) const
|
|
{
|
|
|
|
// fill in tmp table with the neighbor values
|
|
float *tmp1 = new float[d * (M + 1) + (d * k)];
|
|
float *tmp2 = tmp1 + d * (M + 1);
|
|
ScopeDeleter<float> del(tmp1);
|
|
|
|
// collect coordinates of base
|
|
get_neighbor_table (i, tmp1);
|
|
|
|
for (size_t sq = 0; sq < nsq; sq++) {
|
|
int d0 = sq * dsub;
|
|
|
|
{
|
|
FINTEGER ki = k, di = d, m1 = M + 1;
|
|
FINTEGER dsubi = dsub;
|
|
float zero = 0, one = 1;
|
|
|
|
sgemm_ ("N", "N", &dsubi, &ki, &m1, &one,
|
|
tmp1 + d0, &di,
|
|
codebook.data() + sq * (m1 * k), &m1,
|
|
&zero, tmp2, &dsubi);
|
|
}
|
|
|
|
float min = HUGE_VAL;
|
|
int argmin = -1;
|
|
for (size_t j = 0; j < k; j++) {
|
|
float dis = fvec_L2sqr(x + d0, tmp2 + j * dsub, dsub);
|
|
if (dis < min) {
|
|
min = dis;
|
|
argmin = j;
|
|
}
|
|
}
|
|
code[sq] = argmin;
|
|
}
|
|
|
|
}
|
|
|
|
void ReconstructFromNeighbors::add_codes(size_t n, const float *x)
|
|
{
|
|
if (k == 1) { // nothing to encode
|
|
ntotal += n;
|
|
return;
|
|
}
|
|
codes.resize(codes.size() + code_size * n);
|
|
#pragma omp parallel for
|
|
for (int i = 0; i < n; i++) {
|
|
estimate_code(x + i * index.d, ntotal + i,
|
|
codes.data() + (ntotal + i) * code_size);
|
|
}
|
|
ntotal += n;
|
|
FAISS_ASSERT (codes.size() == ntotal * code_size);
|
|
}
|
|
|
|
|
|
/**************************************************************
|
|
* IndexHNSWFlat implementation
|
|
**************************************************************/
|
|
|
|
|
|
namespace {
|
|
|
|
|
|
struct FlatL2Dis: DistanceComputer {
|
|
size_t d;
|
|
Index::idx_t nb;
|
|
const float *q;
|
|
const float *b;
|
|
size_t ndis;
|
|
|
|
float operator () (idx_t i) override
|
|
{
|
|
ndis++;
|
|
return (fvec_L2sqr(q, b + i * d, d));
|
|
}
|
|
|
|
float symmetric_dis(idx_t i, idx_t j) override
|
|
{
|
|
return (fvec_L2sqr(b + j * d, b + i * d, d));
|
|
}
|
|
|
|
|
|
FlatL2Dis(const IndexFlatL2 & storage, const float *q = nullptr):
|
|
q(q)
|
|
{
|
|
nb = storage.ntotal;
|
|
d = storage.d;
|
|
b = storage.xb.data();
|
|
ndis = 0;
|
|
}
|
|
|
|
void set_query(const float *x) override {
|
|
q = x;
|
|
}
|
|
|
|
~FlatL2Dis() override {
|
|
#pragma omp critical
|
|
{
|
|
hnsw_stats.ndis += ndis;
|
|
}
|
|
}
|
|
};
|
|
|
|
|
|
} // namespace
|
|
|
|
|
|
IndexHNSWFlat::IndexHNSWFlat()
|
|
{
|
|
is_trained = true;
|
|
}
|
|
|
|
|
|
IndexHNSWFlat::IndexHNSWFlat(int d, int M):
|
|
IndexHNSW(new IndexFlatL2(d), M)
|
|
{
|
|
own_fields = true;
|
|
is_trained = true;
|
|
}
|
|
|
|
|
|
DistanceComputer * IndexHNSWFlat::get_distance_computer () const
|
|
{
|
|
return new FlatL2Dis (*dynamic_cast<IndexFlatL2*> (storage));
|
|
}
|
|
|
|
|
|
|
|
|
|
/**************************************************************
|
|
* IndexHNSWPQ implementation
|
|
**************************************************************/
|
|
|
|
|
|
namespace {
|
|
|
|
|
|
struct PQDis: DistanceComputer {
|
|
size_t d;
|
|
Index::idx_t nb;
|
|
const uint8_t *codes;
|
|
size_t code_size;
|
|
const ProductQuantizer & pq;
|
|
const float *sdc;
|
|
std::vector<float> precomputed_table;
|
|
size_t ndis;
|
|
|
|
float operator () (idx_t i) override
|
|
{
|
|
const uint8_t *code = codes + i * code_size;
|
|
const float *dt = precomputed_table.data();
|
|
float accu = 0;
|
|
for (int j = 0; j < pq.M; j++) {
|
|
accu += dt[*code++];
|
|
dt += 256;
|
|
}
|
|
ndis++;
|
|
return accu;
|
|
}
|
|
|
|
float symmetric_dis(idx_t i, idx_t j) override
|
|
{
|
|
const float * sdci = sdc;
|
|
float accu = 0;
|
|
const uint8_t *codei = codes + i * code_size;
|
|
const uint8_t *codej = codes + j * code_size;
|
|
|
|
for (int l = 0; l < pq.M; l++) {
|
|
accu += sdci[(*codei++) + (*codej++) * 256];
|
|
sdci += 256 * 256;
|
|
}
|
|
return accu;
|
|
}
|
|
|
|
PQDis(const IndexPQ& storage, const float* /*q*/ = nullptr)
|
|
: pq(storage.pq) {
|
|
precomputed_table.resize(pq.M * pq.ksub);
|
|
nb = storage.ntotal;
|
|
d = storage.d;
|
|
codes = storage.codes.data();
|
|
code_size = pq.code_size;
|
|
FAISS_ASSERT(pq.ksub == 256);
|
|
FAISS_ASSERT(pq.sdc_table.size() == pq.ksub * pq.ksub * pq.M);
|
|
sdc = pq.sdc_table.data();
|
|
ndis = 0;
|
|
}
|
|
|
|
void set_query(const float *x) override {
|
|
pq.compute_distance_table(x, precomputed_table.data());
|
|
}
|
|
|
|
~PQDis() override {
|
|
#pragma omp critical
|
|
{
|
|
hnsw_stats.ndis += ndis;
|
|
}
|
|
}
|
|
};
|
|
|
|
|
|
} // namespace
|
|
|
|
|
|
IndexHNSWPQ::IndexHNSWPQ() {}
|
|
|
|
IndexHNSWPQ::IndexHNSWPQ(int d, int pq_m, int M):
|
|
IndexHNSW(new IndexPQ(d, pq_m, 8), M)
|
|
{
|
|
own_fields = true;
|
|
is_trained = false;
|
|
}
|
|
|
|
void IndexHNSWPQ::train(idx_t n, const float* x)
|
|
{
|
|
IndexHNSW::train (n, x);
|
|
(dynamic_cast<IndexPQ*> (storage))->pq.compute_sdc_table();
|
|
}
|
|
|
|
|
|
|
|
DistanceComputer * IndexHNSWPQ::get_distance_computer () const
|
|
{
|
|
return new PQDis (*dynamic_cast<IndexPQ*> (storage));
|
|
}
|
|
|
|
|
|
/**************************************************************
|
|
* IndexHNSWSQ implementation
|
|
**************************************************************/
|
|
|
|
|
|
IndexHNSWSQ::IndexHNSWSQ(int d, ScalarQuantizer::QuantizerType qtype, int M):
|
|
IndexHNSW (new IndexScalarQuantizer (d, qtype), M)
|
|
{
|
|
is_trained = false;
|
|
own_fields = true;
|
|
}
|
|
|
|
IndexHNSWSQ::IndexHNSWSQ() {}
|
|
|
|
DistanceComputer * IndexHNSWSQ::get_distance_computer () const
|
|
{
|
|
return (dynamic_cast<const IndexScalarQuantizer*> (storage))->
|
|
get_distance_computer ();
|
|
}
|
|
|
|
|
|
|
|
|
|
/**************************************************************
|
|
* IndexHNSW2Level implementation
|
|
**************************************************************/
|
|
|
|
|
|
|
|
IndexHNSW2Level::IndexHNSW2Level(Index *quantizer, size_t nlist, int m_pq, int M):
|
|
IndexHNSW (new Index2Layer (quantizer, nlist, m_pq), M)
|
|
{
|
|
own_fields = true;
|
|
is_trained = false;
|
|
}
|
|
|
|
IndexHNSW2Level::IndexHNSW2Level() {}
|
|
|
|
|
|
namespace {
|
|
|
|
|
|
struct Distance2Level: DistanceComputer {
|
|
size_t d;
|
|
const Index2Layer & storage;
|
|
std::vector<float> buf;
|
|
const float *q;
|
|
|
|
const float *pq_l1_tab, *pq_l2_tab;
|
|
|
|
Distance2Level(const Index2Layer & storage): storage(storage)
|
|
{
|
|
d = storage.d;
|
|
FAISS_ASSERT(storage.pq.dsub == 4);
|
|
pq_l2_tab = storage.pq.centroids.data();
|
|
buf.resize(2 * d);
|
|
}
|
|
|
|
float symmetric_dis(idx_t i, idx_t j) override
|
|
{
|
|
storage.reconstruct(i, buf.data());
|
|
storage.reconstruct(j, buf.data() + d);
|
|
return fvec_L2sqr(buf.data() + d, buf.data(), d);
|
|
}
|
|
|
|
void set_query(const float *x) override {
|
|
q = x;
|
|
}
|
|
};
|
|
|
|
|
|
// well optimized for xNN+PQNN
|
|
struct DistanceXPQ4: Distance2Level {
|
|
|
|
int M, k;
|
|
|
|
DistanceXPQ4(const Index2Layer & storage):
|
|
Distance2Level (storage)
|
|
{
|
|
const IndexFlat *quantizer =
|
|
dynamic_cast<IndexFlat*> (storage.q1.quantizer);
|
|
|
|
FAISS_ASSERT(quantizer);
|
|
M = storage.pq.M;
|
|
pq_l1_tab = quantizer->xb.data();
|
|
}
|
|
|
|
float operator () (idx_t i) override
|
|
{
|
|
#ifdef __SSE__
|
|
const uint8_t *code = storage.codes.data() + i * storage.code_size;
|
|
long key = 0;
|
|
memcpy (&key, code, storage.code_size_1);
|
|
code += storage.code_size_1;
|
|
|
|
// walking pointers
|
|
const float *qa = q;
|
|
const __m128 *l1_t = (const __m128 *)(pq_l1_tab + d * key);
|
|
const __m128 *pq_l2_t = (const __m128 *)pq_l2_tab;
|
|
__m128 accu = _mm_setzero_ps();
|
|
|
|
for (int m = 0; m < M; m++) {
|
|
__m128 qi = _mm_loadu_ps(qa);
|
|
__m128 recons = l1_t[m] + pq_l2_t[*code++];
|
|
__m128 diff = qi - recons;
|
|
accu += diff * diff;
|
|
pq_l2_t += 256;
|
|
qa += 4;
|
|
}
|
|
|
|
accu = _mm_hadd_ps (accu, accu);
|
|
accu = _mm_hadd_ps (accu, accu);
|
|
return _mm_cvtss_f32 (accu);
|
|
#else
|
|
FAISS_THROW_MSG("not implemented for non-x64 platforms");
|
|
#endif
|
|
}
|
|
|
|
};
|
|
|
|
// well optimized for 2xNN+PQNN
|
|
struct Distance2xXPQ4: Distance2Level {
|
|
|
|
int M_2, mi_nbits;
|
|
|
|
Distance2xXPQ4(const Index2Layer & storage):
|
|
Distance2Level (storage)
|
|
{
|
|
const MultiIndexQuantizer *mi =
|
|
dynamic_cast<MultiIndexQuantizer*> (storage.q1.quantizer);
|
|
|
|
FAISS_ASSERT(mi);
|
|
FAISS_ASSERT(storage.pq.M % 2 == 0);
|
|
M_2 = storage.pq.M / 2;
|
|
mi_nbits = mi->pq.nbits;
|
|
pq_l1_tab = mi->pq.centroids.data();
|
|
}
|
|
|
|
float operator () (idx_t i) override
|
|
{
|
|
const uint8_t *code = storage.codes.data() + i * storage.code_size;
|
|
long key01 = 0;
|
|
memcpy (&key01, code, storage.code_size_1);
|
|
code += storage.code_size_1;
|
|
#ifdef __SSE__
|
|
|
|
// walking pointers
|
|
const float *qa = q;
|
|
const __m128 *pq_l1_t = (const __m128 *)pq_l1_tab;
|
|
const __m128 *pq_l2_t = (const __m128 *)pq_l2_tab;
|
|
__m128 accu = _mm_setzero_ps();
|
|
|
|
for (int mi_m = 0; mi_m < 2; mi_m++) {
|
|
long l1_idx = key01 & ((1L << mi_nbits) - 1);
|
|
const __m128 * pq_l1 = pq_l1_t + M_2 * l1_idx;
|
|
|
|
for (int m = 0; m < M_2; m++) {
|
|
__m128 qi = _mm_loadu_ps(qa);
|
|
__m128 recons = pq_l1[m] + pq_l2_t[*code++];
|
|
__m128 diff = qi - recons;
|
|
accu += diff * diff;
|
|
pq_l2_t += 256;
|
|
qa += 4;
|
|
}
|
|
pq_l1_t += M_2 << mi_nbits;
|
|
key01 >>= mi_nbits;
|
|
}
|
|
accu = _mm_hadd_ps (accu, accu);
|
|
accu = _mm_hadd_ps (accu, accu);
|
|
return _mm_cvtss_f32 (accu);
|
|
#else
|
|
FAISS_THROW_MSG("not implemented for non-x64 platforms");
|
|
#endif
|
|
}
|
|
|
|
};
|
|
|
|
|
|
} // namespace
|
|
|
|
|
|
DistanceComputer * IndexHNSW2Level::get_distance_computer () const
|
|
{
|
|
const Index2Layer *storage2l =
|
|
dynamic_cast<Index2Layer*>(storage);
|
|
|
|
if (storage2l) {
|
|
#ifdef __SSE__
|
|
|
|
const MultiIndexQuantizer *mi =
|
|
dynamic_cast<MultiIndexQuantizer*> (storage2l->q1.quantizer);
|
|
|
|
if (mi && storage2l->pq.M % 2 == 0 && storage2l->pq.dsub == 4) {
|
|
return new Distance2xXPQ4(*storage2l);
|
|
}
|
|
|
|
const IndexFlat *fl =
|
|
dynamic_cast<IndexFlat*> (storage2l->q1.quantizer);
|
|
|
|
if (fl && storage2l->pq.dsub == 4) {
|
|
return new DistanceXPQ4(*storage2l);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
// IVFPQ and cases not handled above
|
|
return new GenericDistanceComputer (*storage);
|
|
|
|
}
|
|
|
|
|
|
namespace {
|
|
|
|
|
|
// same as search_from_candidates but uses v
|
|
// visno -> is in result list
|
|
// visno + 1 -> in result list + in candidates
|
|
int search_from_candidates_2(const HNSW & hnsw,
|
|
DistanceComputer & qdis, int k,
|
|
idx_t *I, float * D,
|
|
MinimaxHeap &candidates,
|
|
VisitedTable &vt,
|
|
int level, int nres_in = 0)
|
|
{
|
|
int nres = nres_in;
|
|
int ndis = 0;
|
|
for (int i = 0; i < candidates.size(); i++) {
|
|
idx_t v1 = candidates.ids[i];
|
|
FAISS_ASSERT(v1 >= 0);
|
|
vt.visited[v1] = vt.visno + 1;
|
|
}
|
|
|
|
int nstep = 0;
|
|
|
|
while (candidates.size() > 0) {
|
|
float d0 = 0;
|
|
int v0 = candidates.pop_min(&d0);
|
|
|
|
size_t begin, end;
|
|
hnsw.neighbor_range(v0, level, &begin, &end);
|
|
|
|
for (size_t j = begin; j < end; j++) {
|
|
int v1 = hnsw.neighbors[j];
|
|
if (v1 < 0) break;
|
|
if (vt.visited[v1] == vt.visno + 1) {
|
|
// nothing to do
|
|
} else {
|
|
ndis++;
|
|
float d = qdis(v1);
|
|
candidates.push(v1, d);
|
|
|
|
// never seen before --> add to heap
|
|
if (vt.visited[v1] < vt.visno) {
|
|
if (nres < k) {
|
|
faiss::maxheap_push (++nres, D, I, d, v1);
|
|
} else if (d < D[0]) {
|
|
faiss::maxheap_pop (nres--, D, I);
|
|
faiss::maxheap_push (++nres, D, I, d, v1);
|
|
}
|
|
}
|
|
vt.visited[v1] = vt.visno + 1;
|
|
}
|
|
}
|
|
|
|
nstep++;
|
|
if (nstep > hnsw.efSearch) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (level == 0) {
|
|
#pragma omp critical
|
|
{
|
|
hnsw_stats.n1 ++;
|
|
if (candidates.size() == 0)
|
|
hnsw_stats.n2 ++;
|
|
}
|
|
}
|
|
|
|
|
|
return nres;
|
|
}
|
|
|
|
|
|
} // namespace
|
|
|
|
void IndexHNSW2Level::search (idx_t n, const float *x, idx_t k,
|
|
float *distances, idx_t *labels) const
|
|
{
|
|
if (dynamic_cast<const Index2Layer*>(storage)) {
|
|
IndexHNSW::search (n, x, k, distances, labels);
|
|
|
|
} else { // "mixed" search
|
|
|
|
const IndexIVFPQ *index_ivfpq =
|
|
dynamic_cast<const IndexIVFPQ*>(storage);
|
|
|
|
int nprobe = index_ivfpq->nprobe;
|
|
|
|
long * coarse_assign = new long [n * nprobe];
|
|
ScopeDeleter<long> del (coarse_assign);
|
|
float * coarse_dis = new float [n * nprobe];
|
|
ScopeDeleter<float> del2 (coarse_dis);
|
|
|
|
index_ivfpq->quantizer->search (n, x, nprobe, coarse_dis, coarse_assign);
|
|
|
|
index_ivfpq->search_preassigned (
|
|
n, x, k, coarse_assign, coarse_dis, distances, labels, false);
|
|
|
|
#pragma omp parallel
|
|
{
|
|
VisitedTable vt (ntotal);
|
|
DistanceComputer *dis = get_distance_computer();
|
|
ScopeDeleter1<DistanceComputer> del(dis);
|
|
|
|
int candidates_size = hnsw.upper_beam;
|
|
MinimaxHeap candidates(candidates_size);
|
|
|
|
#pragma omp for
|
|
for(idx_t i = 0; i < n; i++) {
|
|
idx_t * idxi = labels + i * k;
|
|
float * simi = distances + i * k;
|
|
dis->set_query(x + i * d);
|
|
|
|
// mark all inverted list elements as visited
|
|
|
|
for (int j = 0; j < nprobe; j++) {
|
|
idx_t key = coarse_assign[j + i * nprobe];
|
|
if (key < 0) break;
|
|
size_t list_length = index_ivfpq->get_list_size (key);
|
|
const idx_t * ids = index_ivfpq->invlists->get_ids (key);
|
|
|
|
for (int jj = 0; jj < list_length; jj++) {
|
|
vt.set (ids[jj]);
|
|
}
|
|
}
|
|
|
|
candidates.clear();
|
|
// copy the upper_beam elements to candidates list
|
|
|
|
int search_policy = 2;
|
|
|
|
if (search_policy == 1) {
|
|
|
|
for (int j = 0 ; j < hnsw.upper_beam && j < k; j++) {
|
|
if (idxi[j] < 0) break;
|
|
candidates.push (idxi[j], simi[j]);
|
|
// search_from_candidates adds them back
|
|
idxi[j] = -1;
|
|
simi[j] = HUGE_VAL;
|
|
}
|
|
|
|
// reorder from sorted to heap
|
|
maxheap_heapify (k, simi, idxi, simi, idxi, k);
|
|
|
|
hnsw.search_from_candidates(
|
|
*dis, k, idxi, simi,
|
|
candidates, vt, 0, k
|
|
);
|
|
|
|
vt.advance();
|
|
|
|
} else if (search_policy == 2) {
|
|
|
|
for (int j = 0 ; j < hnsw.upper_beam && j < k; j++) {
|
|
if (idxi[j] < 0) break;
|
|
candidates.push (idxi[j], simi[j]);
|
|
}
|
|
|
|
// reorder from sorted to heap
|
|
maxheap_heapify (k, simi, idxi, simi, idxi, k);
|
|
|
|
search_from_candidates_2 (
|
|
hnsw, *dis, k, idxi, simi,
|
|
candidates, vt, 0, k);
|
|
vt.advance ();
|
|
vt.advance ();
|
|
|
|
}
|
|
|
|
maxheap_reorder (k, simi, idxi);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
}
|
|
|
|
|
|
void IndexHNSW2Level::flip_to_ivf ()
|
|
{
|
|
Index2Layer *storage2l =
|
|
dynamic_cast<Index2Layer*>(storage);
|
|
|
|
FAISS_THROW_IF_NOT (storage2l);
|
|
|
|
IndexIVFPQ * index_ivfpq =
|
|
new IndexIVFPQ (storage2l->q1.quantizer,
|
|
d, storage2l->q1.nlist,
|
|
storage2l->pq.M, 8);
|
|
index_ivfpq->pq = storage2l->pq;
|
|
index_ivfpq->is_trained = storage2l->is_trained;
|
|
index_ivfpq->precompute_table();
|
|
index_ivfpq->own_fields = storage2l->q1.own_fields;
|
|
storage2l->transfer_to_IVFPQ(*index_ivfpq);
|
|
index_ivfpq->make_direct_map (true);
|
|
|
|
storage = index_ivfpq;
|
|
delete storage2l;
|
|
|
|
}
|
|
|
|
|
|
} // namespace faiss
|