716 lines
20 KiB
C++
716 lines
20 KiB
C++
/**
|
|
* Copyright (c) 2015-present, Facebook, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This source code is licensed under the BSD+Patents license found in the
|
|
* LICENSE file in the root directory of this source tree.
|
|
*/
|
|
|
|
// -*- c++ -*-
|
|
|
|
#include "ProductQuantizer.h"
|
|
|
|
|
|
#include <cstddef>
|
|
#include <cstring>
|
|
#include <cstdio>
|
|
|
|
#include <algorithm>
|
|
|
|
#include "FaissAssert.h"
|
|
#include "VectorTransform.h"
|
|
#include "IndexFlat.h"
|
|
#include "utils.h"
|
|
|
|
|
|
extern "C" {
|
|
|
|
/* declare BLAS functions, see http://www.netlib.org/clapack/cblas/ */
|
|
|
|
int sgemm_ (const char *transa, const char *transb, FINTEGER *m, FINTEGER *
|
|
n, FINTEGER *k, const float *alpha, const float *a,
|
|
FINTEGER *lda, const float *b, FINTEGER *
|
|
ldb, float *beta, float *c, FINTEGER *ldc);
|
|
|
|
}
|
|
|
|
|
|
namespace faiss {
|
|
|
|
|
|
/* compute an estimator using look-up tables for typical values of M */
|
|
template <typename CT, class C>
|
|
void pq_estimators_from_tables_Mmul4 (int M, const CT * codes,
|
|
size_t ncodes,
|
|
const float * __restrict dis_table,
|
|
size_t ksub,
|
|
size_t k,
|
|
float * heap_dis,
|
|
long * heap_ids)
|
|
{
|
|
|
|
for (size_t j = 0; j < ncodes; j++) {
|
|
float dis = 0;
|
|
const float *dt = dis_table;
|
|
|
|
for (size_t m = 0; m < M; m+=4) {
|
|
float dism = 0;
|
|
dism = dt[*codes++]; dt += ksub;
|
|
dism += dt[*codes++]; dt += ksub;
|
|
dism += dt[*codes++]; dt += ksub;
|
|
dism += dt[*codes++]; dt += ksub;
|
|
dis += dism;
|
|
}
|
|
|
|
if (C::cmp (heap_dis[0], dis)) {
|
|
heap_pop<C> (k, heap_dis, heap_ids);
|
|
heap_push<C> (k, heap_dis, heap_ids, dis, j);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
template <typename CT, class C>
|
|
void pq_estimators_from_tables_M4 (const CT * codes,
|
|
size_t ncodes,
|
|
const float * __restrict dis_table,
|
|
size_t ksub,
|
|
size_t k,
|
|
float * heap_dis,
|
|
long * heap_ids)
|
|
{
|
|
|
|
for (size_t j = 0; j < ncodes; j++) {
|
|
float dis = 0;
|
|
const float *dt = dis_table;
|
|
dis = dt[*codes++]; dt += ksub;
|
|
dis += dt[*codes++]; dt += ksub;
|
|
dis += dt[*codes++]; dt += ksub;
|
|
dis += dt[*codes++];
|
|
|
|
if (C::cmp (heap_dis[0], dis)) {
|
|
heap_pop<C> (k, heap_dis, heap_ids);
|
|
heap_push<C> (k, heap_dis, heap_ids, dis, j);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
template <typename CT, class C>
|
|
static inline void pq_estimators_from_tables (const ProductQuantizer * pq,
|
|
const CT * codes,
|
|
size_t ncodes,
|
|
const float * dis_table,
|
|
size_t k,
|
|
float * heap_dis,
|
|
long * heap_ids)
|
|
{
|
|
|
|
if (pq->M == 4) {
|
|
|
|
pq_estimators_from_tables_M4<CT, C> (codes, ncodes,
|
|
dis_table, pq->ksub, k,
|
|
heap_dis, heap_ids);
|
|
return;
|
|
}
|
|
|
|
if (pq->M % 4 == 0) {
|
|
pq_estimators_from_tables_Mmul4<CT, C> (pq->M, codes, ncodes,
|
|
dis_table, pq->ksub, k,
|
|
heap_dis, heap_ids);
|
|
return;
|
|
}
|
|
|
|
/* Default is relatively slow */
|
|
const size_t M = pq->M;
|
|
const size_t ksub = pq->ksub;
|
|
for (size_t j = 0; j < ncodes; j++) {
|
|
float dis = 0;
|
|
const float * __restrict dt = dis_table;
|
|
for (int m = 0; m < M; m++) {
|
|
dis += dt[*codes++];
|
|
dt += ksub;
|
|
}
|
|
if (C::cmp (heap_dis[0], dis)) {
|
|
heap_pop<C> (k, heap_dis, heap_ids);
|
|
heap_push<C> (k, heap_dis, heap_ids, dis, j);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*********************************************
|
|
* PQ implementation
|
|
*********************************************/
|
|
|
|
|
|
|
|
ProductQuantizer::ProductQuantizer (size_t d, size_t M, size_t nbits):
|
|
d(d), M(M), nbits(nbits), assign_index(nullptr)
|
|
{
|
|
set_derived_values ();
|
|
}
|
|
|
|
ProductQuantizer::ProductQuantizer ():
|
|
d(0), M(1), nbits(0), assign_index(nullptr)
|
|
{
|
|
set_derived_values ();
|
|
}
|
|
|
|
|
|
|
|
void ProductQuantizer::set_derived_values () {
|
|
// quite a few derived values
|
|
FAISS_THROW_IF_NOT (d % M == 0);
|
|
dsub = d / M;
|
|
byte_per_idx = (nbits + 7) / 8;
|
|
code_size = byte_per_idx * M;
|
|
ksub = 1 << nbits;
|
|
centroids.resize (d * ksub);
|
|
verbose = false;
|
|
train_type = Train_default;
|
|
}
|
|
|
|
|
|
void ProductQuantizer::set_params (const float * centroids_, int m)
|
|
{
|
|
memcpy (get_centroids(m, 0), centroids_,
|
|
ksub * dsub * sizeof (centroids_[0]));
|
|
}
|
|
|
|
|
|
static void init_hypercube (int d, int nbits,
|
|
int n, const float * x,
|
|
float *centroids)
|
|
{
|
|
|
|
std::vector<float> mean (d);
|
|
for (int i = 0; i < n; i++)
|
|
for (int j = 0; j < d; j++)
|
|
mean [j] += x[i * d + j];
|
|
|
|
float maxm = 0;
|
|
for (int j = 0; j < d; j++) {
|
|
mean [j] /= n;
|
|
if (fabs(mean[j]) > maxm) maxm = fabs(mean[j]);
|
|
}
|
|
|
|
for (int i = 0; i < (1 << nbits); i++) {
|
|
float * cent = centroids + i * d;
|
|
for (int j = 0; j < nbits; j++)
|
|
cent[j] = mean [j] + (((i >> j) & 1) ? 1 : -1) * maxm;
|
|
for (int j = nbits; j < d; j++)
|
|
cent[j] = mean [j];
|
|
}
|
|
|
|
|
|
}
|
|
|
|
static void init_hypercube_pca (int d, int nbits,
|
|
int n, const float * x,
|
|
float *centroids)
|
|
{
|
|
PCAMatrix pca (d, nbits);
|
|
pca.train (n, x);
|
|
|
|
|
|
for (int i = 0; i < (1 << nbits); i++) {
|
|
float * cent = centroids + i * d;
|
|
for (int j = 0; j < d; j++) {
|
|
cent[j] = pca.mean[j];
|
|
float f = 1.0;
|
|
for (int k = 0; k < nbits; k++)
|
|
cent[j] += f *
|
|
sqrt (pca.eigenvalues [k]) *
|
|
(((i >> k) & 1) ? 1 : -1) *
|
|
pca.PCAMat [j + k * d];
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
void ProductQuantizer::train (int n, const float * x)
|
|
{
|
|
if (train_type != Train_shared) {
|
|
train_type_t final_train_type;
|
|
final_train_type = train_type;
|
|
if (train_type == Train_hypercube ||
|
|
train_type == Train_hypercube_pca) {
|
|
if (dsub < nbits) {
|
|
final_train_type = Train_default;
|
|
printf ("cannot train hypercube: nbits=%ld > log2(d=%ld)\n",
|
|
nbits, dsub);
|
|
}
|
|
}
|
|
|
|
float * xslice = new float[n * dsub];
|
|
ScopeDeleter<float> del (xslice);
|
|
for (int m = 0; m < M; m++) {
|
|
for (int j = 0; j < n; j++)
|
|
memcpy (xslice + j * dsub,
|
|
x + j * d + m * dsub,
|
|
dsub * sizeof(float));
|
|
|
|
Clustering clus (dsub, ksub, cp);
|
|
|
|
// we have some initialization for the centroids
|
|
if (final_train_type != Train_default) {
|
|
clus.centroids.resize (dsub * ksub);
|
|
}
|
|
|
|
switch (final_train_type) {
|
|
case Train_hypercube:
|
|
init_hypercube (dsub, nbits, n, xslice,
|
|
clus.centroids.data ());
|
|
break;
|
|
case Train_hypercube_pca:
|
|
init_hypercube_pca (dsub, nbits, n, xslice,
|
|
clus.centroids.data ());
|
|
break;
|
|
case Train_hot_start:
|
|
memcpy (clus.centroids.data(),
|
|
get_centroids (m, 0),
|
|
dsub * ksub * sizeof (float));
|
|
break;
|
|
default: ;
|
|
}
|
|
|
|
if(verbose) {
|
|
clus.verbose = true;
|
|
printf ("Training PQ slice %d/%zd\n", m, M);
|
|
}
|
|
IndexFlatL2 index (dsub);
|
|
clus.train (n, xslice, assign_index ? *assign_index : index);
|
|
set_params (clus.centroids.data(), m);
|
|
}
|
|
|
|
|
|
} else {
|
|
|
|
Clustering clus (dsub, ksub, cp);
|
|
|
|
if(verbose) {
|
|
clus.verbose = true;
|
|
printf ("Training all PQ slices at once\n");
|
|
}
|
|
|
|
IndexFlatL2 index (dsub);
|
|
|
|
clus.train (n * M, x, assign_index ? *assign_index : index);
|
|
for (int m = 0; m < M; m++) {
|
|
set_params (clus.centroids.data(), m);
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
|
|
void ProductQuantizer::compute_code (const float * x, uint8_t * code) const
|
|
{
|
|
float distances [ksub];
|
|
for (size_t m = 0; m < M; m++) {
|
|
float mindis = 1e20;
|
|
int idxm = -1;
|
|
const float * xsub = x + m * dsub;
|
|
|
|
fvec_L2sqr_ny (distances, xsub, get_centroids(m, 0), dsub, ksub);
|
|
|
|
/* Find best centroid */
|
|
size_t i;
|
|
for (i = 0; i < ksub; i++) {
|
|
float dis = distances [i];
|
|
if (dis < mindis) {
|
|
mindis = dis;
|
|
idxm = i;
|
|
}
|
|
}
|
|
switch (byte_per_idx) {
|
|
case 1: code[m] = (uint8_t) idxm; break;
|
|
case 2: ((uint16_t *) code)[m] = (uint16_t) idxm; break;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
void ProductQuantizer::decode (const uint8_t *code, float *x) const
|
|
{
|
|
if (byte_per_idx == 1) {
|
|
for (size_t m = 0; m < M; m++) {
|
|
memcpy (x + m * dsub, get_centroids(m, code[m]),
|
|
sizeof(float) * dsub);
|
|
}
|
|
} else {
|
|
const uint16_t *c = (const uint16_t*) code;
|
|
for (size_t m = 0; m < M; m++) {
|
|
memcpy (x + m * dsub, get_centroids(m, c[m]),
|
|
sizeof(float) * dsub);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void ProductQuantizer::decode (const uint8_t *code, float *x, size_t n) const
|
|
{
|
|
for (size_t i = 0; i < n; i++) {
|
|
this->decode (code + code_size * i, x + d * i);
|
|
}
|
|
}
|
|
|
|
|
|
void ProductQuantizer::compute_code_from_distance_table (const float *tab,
|
|
uint8_t *code) const
|
|
{
|
|
for (size_t m = 0; m < M; m++) {
|
|
float mindis = 1e20;
|
|
int idxm = -1;
|
|
|
|
/* Find best centroid */
|
|
for (size_t j = 0; j < ksub; j++) {
|
|
float dis = *tab++;
|
|
if (dis < mindis) {
|
|
mindis = dis;
|
|
idxm = j;
|
|
}
|
|
}
|
|
switch (byte_per_idx) {
|
|
case 1: code[m] = (uint8_t) idxm; break;
|
|
case 2: ((uint16_t *) code)[m] = (uint16_t) idxm; break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void ProductQuantizer::compute_codes_with_assign_index (
|
|
const float * x,
|
|
uint8_t * codes,
|
|
size_t n)
|
|
{
|
|
FAISS_THROW_IF_NOT (assign_index && assign_index->d == dsub);
|
|
|
|
for (size_t m = 0; m < M; m++) {
|
|
assign_index->reset ();
|
|
assign_index->add (ksub, get_centroids (m, 0));
|
|
size_t bs = 65536;
|
|
float * xslice = new float[bs * dsub];
|
|
ScopeDeleter<float> del (xslice);
|
|
idx_t *assign = new idx_t[bs];
|
|
ScopeDeleter<idx_t> del2 (assign);
|
|
|
|
for (size_t i0 = 0; i0 < n; i0 += bs) {
|
|
size_t i1 = std::min(i0 + bs, n);
|
|
|
|
for (size_t i = i0; i < i1; i++) {
|
|
memcpy (xslice + (i - i0) * dsub,
|
|
x + i * d + m * dsub,
|
|
dsub * sizeof(float));
|
|
}
|
|
|
|
assign_index->assign (i1 - i0, xslice, assign);
|
|
|
|
switch (byte_per_idx) {
|
|
case 1:
|
|
{
|
|
uint8_t *c = codes + code_size * i0 + m;
|
|
for (size_t i = i0; i < i1; i++) {
|
|
*c = assign[i - i0];
|
|
c += M;
|
|
}
|
|
}
|
|
break;
|
|
case 2:
|
|
{
|
|
uint16_t *c = (uint16_t*)(codes + code_size * i0 + m * 2);
|
|
for (size_t i = i0; i < i1; i++) {
|
|
*c = assign[i - i0];
|
|
c += M;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
void ProductQuantizer::compute_codes (const float * x,
|
|
uint8_t * codes,
|
|
size_t n) const
|
|
{
|
|
|
|
// process by blocks to avoid using too much RAM
|
|
size_t bs = 256 * 1024;
|
|
if (n > bs) {
|
|
for (size_t i0 = 0; i0 < n; i0 += bs) {
|
|
size_t i1 = std::min(i0 + bs, n);
|
|
compute_codes (x + d * i0, codes + code_size * i0, i1 - i0);
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (dsub < 16) { // simple direct computation
|
|
|
|
#pragma omp parallel for
|
|
for (size_t i = 0; i < n; i++)
|
|
compute_code (x + i * d, codes + i * code_size);
|
|
|
|
} else { // worthwile to use BLAS
|
|
float *dis_tables = new float [n * ksub * M];
|
|
ScopeDeleter<float> del (dis_tables);
|
|
compute_distance_tables (n, x, dis_tables);
|
|
|
|
#pragma omp parallel for
|
|
for (size_t i = 0; i < n; i++) {
|
|
uint8_t * code = codes + i * code_size;
|
|
const float * tab = dis_tables + i * ksub * M;
|
|
compute_code_from_distance_table (tab, code);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void ProductQuantizer::compute_distance_table (const float * x,
|
|
float * dis_table) const
|
|
{
|
|
size_t m;
|
|
|
|
for (m = 0; m < M; m++) {
|
|
fvec_L2sqr_ny (dis_table + m * ksub,
|
|
x + m * dsub,
|
|
get_centroids(m, 0),
|
|
dsub,
|
|
ksub);
|
|
}
|
|
}
|
|
|
|
void ProductQuantizer::compute_inner_prod_table (const float * x,
|
|
float * dis_table) const
|
|
{
|
|
size_t m;
|
|
|
|
for (m = 0; m < M; m++) {
|
|
fvec_inner_products_ny (dis_table + m * ksub,
|
|
x + m * dsub,
|
|
get_centroids(m, 0),
|
|
dsub,
|
|
ksub);
|
|
}
|
|
}
|
|
|
|
|
|
void ProductQuantizer::compute_distance_tables (
|
|
size_t nx,
|
|
const float * x,
|
|
float * dis_tables) const
|
|
{
|
|
|
|
if (dsub < 16) {
|
|
|
|
#pragma omp parallel for
|
|
for (size_t i = 0; i < nx; i++) {
|
|
compute_distance_table (x + i * d, dis_tables + i * ksub * M);
|
|
}
|
|
|
|
} else { // use BLAS
|
|
|
|
for (int m = 0; m < M; m++) {
|
|
pairwise_L2sqr (dsub,
|
|
nx, x + dsub * m,
|
|
ksub, centroids.data() + m * dsub * ksub,
|
|
dis_tables + ksub * m,
|
|
d, dsub, ksub * M);
|
|
}
|
|
}
|
|
}
|
|
|
|
void ProductQuantizer::compute_inner_prod_tables (
|
|
size_t nx,
|
|
const float * x,
|
|
float * dis_tables) const
|
|
{
|
|
|
|
if (dsub < 16) {
|
|
|
|
#pragma omp parallel for
|
|
for (size_t i = 0; i < nx; i++) {
|
|
compute_inner_prod_table (x + i * d, dis_tables + i * ksub * M);
|
|
}
|
|
|
|
} else { // use BLAS
|
|
|
|
// compute distance tables
|
|
for (int m = 0; m < M; m++) {
|
|
FINTEGER ldc = ksub * M, nxi = nx, ksubi = ksub,
|
|
dsubi = dsub, di = d;
|
|
float one = 1.0, zero = 0;
|
|
|
|
sgemm_ ("Transposed", "Not transposed",
|
|
&ksubi, &nxi, &dsubi,
|
|
&one, ¢roids [m * dsub * ksub], &dsubi,
|
|
x + dsub * m, &di,
|
|
&zero, dis_tables + ksub * m, &ldc);
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
template <typename CT, class C>
|
|
static void pq_knn_search_with_tables (
|
|
const ProductQuantizer * pq,
|
|
const float *dis_tables,
|
|
const uint8_t * codes,
|
|
const size_t ncodes,
|
|
HeapArray<C> * res,
|
|
bool init_finalize_heap)
|
|
{
|
|
size_t k = res->k, nx = res->nh;
|
|
size_t ksub = pq->ksub, M = pq->M;
|
|
|
|
|
|
#pragma omp parallel for
|
|
for (size_t i = 0; i < nx; i++) {
|
|
/* query preparation for asymmetric search: compute look-up tables */
|
|
const float* dis_table = dis_tables + i * ksub * M;
|
|
|
|
/* Compute distances and keep smallest values */
|
|
long * __restrict heap_ids = res->ids + i * k;
|
|
float * __restrict heap_dis = res->val + i * k;
|
|
|
|
if (init_finalize_heap) {
|
|
heap_heapify<C> (k, heap_dis, heap_ids);
|
|
}
|
|
|
|
pq_estimators_from_tables<CT, C> (pq,
|
|
(CT*)codes, ncodes,
|
|
dis_table,
|
|
k, heap_dis, heap_ids);
|
|
if (init_finalize_heap) {
|
|
heap_reorder<C> (k, heap_dis, heap_ids);
|
|
}
|
|
}
|
|
}
|
|
|
|
void ProductQuantizer::search (const float * __restrict x,
|
|
size_t nx,
|
|
const uint8_t * codes,
|
|
const size_t ncodes,
|
|
float_maxheap_array_t * res,
|
|
bool init_finalize_heap) const
|
|
{
|
|
FAISS_THROW_IF_NOT (nx == res->nh);
|
|
float * dis_tables = new float [nx * ksub * M];
|
|
ScopeDeleter<float> del(dis_tables);
|
|
compute_distance_tables (nx, x, dis_tables);
|
|
|
|
if (byte_per_idx == 1) {
|
|
|
|
pq_knn_search_with_tables<uint8_t, CMax<float, long> > (
|
|
this, dis_tables, codes, ncodes, res, init_finalize_heap);
|
|
|
|
} else if (byte_per_idx == 2) {
|
|
pq_knn_search_with_tables<uint16_t, CMax<float, long> > (
|
|
this, dis_tables, codes, ncodes, res, init_finalize_heap);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
void ProductQuantizer::search_ip (const float * __restrict x,
|
|
size_t nx,
|
|
const uint8_t * codes,
|
|
const size_t ncodes,
|
|
float_minheap_array_t * res,
|
|
bool init_finalize_heap) const
|
|
{
|
|
FAISS_THROW_IF_NOT (nx == res->nh);
|
|
float * dis_tables = new float [nx * ksub * M];
|
|
ScopeDeleter<float> del(dis_tables);
|
|
compute_inner_prod_tables (nx, x, dis_tables);
|
|
|
|
if (byte_per_idx == 1) {
|
|
|
|
pq_knn_search_with_tables<uint8_t, CMin<float, long> > (
|
|
this, dis_tables, codes, ncodes, res, init_finalize_heap);
|
|
|
|
} else if (byte_per_idx == 2) {
|
|
pq_knn_search_with_tables<uint16_t, CMin<float, long> > (
|
|
this, dis_tables, codes, ncodes, res, init_finalize_heap);
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static float sqr (float x) {
|
|
return x * x;
|
|
}
|
|
|
|
void ProductQuantizer::compute_sdc_table ()
|
|
{
|
|
sdc_table.resize (M * ksub * ksub);
|
|
|
|
for (int m = 0; m < M; m++) {
|
|
|
|
const float *cents = centroids.data() + m * ksub * dsub;
|
|
float * dis_tab = sdc_table.data() + m * ksub * ksub;
|
|
|
|
// TODO optimize with BLAS
|
|
for (int i = 0; i < ksub; i++) {
|
|
const float *centi = cents + i * dsub;
|
|
for (int j = 0; j < ksub; j++) {
|
|
float accu = 0;
|
|
const float *centj = cents + j * dsub;
|
|
for (int k = 0; k < dsub; k++)
|
|
accu += sqr (centi[k] - centj[k]);
|
|
dis_tab [i + j * ksub] = accu;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void ProductQuantizer::search_sdc (const uint8_t * qcodes,
|
|
size_t nq,
|
|
const uint8_t * bcodes,
|
|
const size_t nb,
|
|
float_maxheap_array_t * res,
|
|
bool init_finalize_heap) const
|
|
{
|
|
FAISS_THROW_IF_NOT (sdc_table.size() == M * ksub * ksub);
|
|
FAISS_THROW_IF_NOT (byte_per_idx == 1);
|
|
size_t k = res->k;
|
|
|
|
|
|
#pragma omp parallel for
|
|
for (size_t i = 0; i < nq; i++) {
|
|
|
|
/* Compute distances and keep smallest values */
|
|
long * heap_ids = res->ids + i * k;
|
|
float * heap_dis = res->val + i * k;
|
|
const uint8_t * qcode = qcodes + i * code_size;
|
|
|
|
if (init_finalize_heap)
|
|
maxheap_heapify (k, heap_dis, heap_ids);
|
|
|
|
const uint8_t * bcode = bcodes;
|
|
for (size_t j = 0; j < nb; j++) {
|
|
float dis = 0;
|
|
const float * tab = sdc_table.data();
|
|
for (int m = 0; m < M; m++) {
|
|
dis += tab[bcode[m] + qcode[m] * ksub];
|
|
tab += ksub * ksub;
|
|
}
|
|
if (dis < heap_dis[0]) {
|
|
maxheap_pop (k, heap_dis, heap_ids);
|
|
maxheap_push (k, heap_dis, heap_ids, dis, j);
|
|
}
|
|
bcode += code_size;
|
|
}
|
|
|
|
if (init_finalize_heap)
|
|
maxheap_reorder (k, heap_dis, heap_ids);
|
|
}
|
|
|
|
}
|
|
|
|
|
|
} // namespace faiss
|