faiss/IndexIVF.cpp

518 lines
14 KiB
C++

/**
* Copyright (c) 2015-present, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under the CC-by-NC license found in the
* LICENSE file in the root directory of this source tree.
*/
/* Copyright 2004-present Facebook. All Rights Reserved.
Inverted list structure.
*/
#include "IndexIVF.h"
#include <cstdio>
#include "utils.h"
#include "hamming.h"
#include "FaissAssert.h"
#include "IndexFlat.h"
#include "AuxIndexStructures.h"
namespace faiss {
/*****************************************
* IndexIVF implementation
******************************************/
IndexIVF::IndexIVF (Index * quantizer, size_t d, size_t nlist,
MetricType metric):
Index (d, metric),
nlist (nlist),
nprobe (1),
quantizer (quantizer),
quantizer_trains_alone (false),
own_fields (false),
ids (nlist),
maintain_direct_map (false)
{
FAISS_ASSERT (d == quantizer->d);
is_trained = quantizer->is_trained && (quantizer->ntotal == nlist);
// Spherical by default if the metric is inner_product
if (metric_type == METRIC_INNER_PRODUCT) {
cp.spherical = true;
}
// here we set a low # iterations because this is typically used
// for large clusterings (nb this is not used for the MultiIndex,
// for which quantizer_trains_alone = true)
cp.niter = 10;
cp.verbose = verbose;
}
IndexIVF::IndexIVF ():
nlist (0), nprobe (1), quantizer (nullptr),
quantizer_trains_alone (false), own_fields (false),
maintain_direct_map (false)
{}
void IndexIVF::add (idx_t n, const float * x)
{
add_with_ids (n, x, nullptr);
}
void IndexIVF::make_direct_map ()
{
if (maintain_direct_map) return;
direct_map.resize (ntotal, -1);
for (size_t key = 0; key < nlist; key++) {
const std::vector<long> & idlist = ids[key];
for (long ofs = 0; ofs < idlist.size(); ofs++) {
direct_map [idlist [ofs]] =
key << 32 | ofs;
}
}
maintain_direct_map = true;
}
void IndexIVF::reset ()
{
ntotal = 0;
direct_map.clear();
for (size_t i = 0; i < ids.size(); i++)
ids[i].clear();
}
void IndexIVF::train (idx_t n, const float *x)
{
if (quantizer->is_trained && (quantizer->ntotal == nlist)) {
if (verbose)
printf ("IVF quantizer does not need training.\n");
} else if (quantizer_trains_alone) {
if (verbose)
printf ("IVF quantizer trains alone...\n");
quantizer->train (n, x);
FAISS_ASSERT (quantizer->ntotal == nlist ||
!"nlist not consistent with quantizer size");
} else {
if (verbose)
printf ("Training IVF quantizer on %ld vectors in %dD\n",
n, d);
Clustering clus (d, nlist, cp);
quantizer->reset();
clus.train (n, x, *quantizer);
quantizer->is_trained = true;
}
if (verbose)
printf ("Training IVF residual\n");
train_residual (n, x);
is_trained = true;
}
void IndexIVF::train_residual (idx_t n, const float *x)
{
if (verbose)
printf ("IndexIVF: no residual training\n");
// does nothing by default
}
double IndexIVF::imbalance_factor () const
{
std::vector<int> hist (nlist);
for (int i = 0; i < nlist; i++) {
hist[i] = ids[i].size();
}
return faiss::imbalance_factor (nlist, hist.data());
}
void IndexIVF::print_stats () const
{
std::vector<int> sizes(40);
for (int i = 0; i < nlist; i++) {
for (int j = 0; j < sizes.size(); j++) {
if ((ids[i].size() >> j) == 0) {
sizes[j]++;
break;
}
}
}
for (int i = 0; i < sizes.size(); i++) {
if (sizes[i]) {
printf ("list size in < %d: %d instances\n",
1 << i, sizes[i]);
}
}
}
void IndexIVF::merge_from (IndexIVF &other, idx_t add_id)
{
// minimal sanity checks
FAISS_ASSERT (other.d == d);
FAISS_ASSERT (other.nlist == nlist);
FAISS_ASSERT ((!maintain_direct_map && !other.maintain_direct_map) ||
!"direct map copy not implemented");
FAISS_ASSERT (typeid (*this) == typeid (other) ||
!"can only merge indexes of the same type");
for (long i = 0; i < nlist; i++) {
std::vector<idx_t> & src = other.ids[i];
std::vector<idx_t> & dest = ids[i];
for (long j = 0; j < src.size(); j++)
dest.push_back (src[j] + add_id);
src.clear();
}
merge_from_residuals (other);
ntotal += other.ntotal;
other.ntotal = 0;
}
IndexIVF::~IndexIVF()
{
if (own_fields) delete quantizer;
}
/*****************************************
* IndexIVFFlat implementation
******************************************/
IndexIVFFlat::IndexIVFFlat (Index * quantizer,
size_t d, size_t nlist, MetricType metric):
IndexIVF (quantizer, d, nlist, metric)
{
vecs.resize (nlist);
set_typename();
}
void IndexIVFFlat::set_typename ()
{
std::stringstream s;
if (metric_type == METRIC_INNER_PRODUCT)
s << "IvfIP";
else if (metric_type == METRIC_L2)
s << "IvfL2";
else s << "??";
s << "[" << nlist << ":" << quantizer->index_typename << "]";
index_typename = s.str();
}
void IndexIVFFlat::add_with_ids (idx_t n, const float * x, const long *xids)
{
add_core (n, x, xids, nullptr);
}
void IndexIVFFlat::add_core (idx_t n, const float * x, const long *xids,
const long *precomputed_idx)
{
FAISS_ASSERT (is_trained);
const long * idx;
if (precomputed_idx) {
idx = precomputed_idx;
} else {
long * idx0 = new long [n];
quantizer->assign (n, x, idx0);
idx = idx0;
}
long n_add = 0;
for (size_t i = 0; i < n; i++) {
long id = xids ? xids[i] : ntotal + i;
long list_no = idx [i];
if (list_no < 0)
continue;
FAISS_ASSERT (list_no < nlist);
ids[list_no].push_back (id);
const float *xi = x + i * d;
/* store the vectors */
for (size_t j = 0 ; j < d ; j++)
vecs[list_no].push_back (xi [j]);
if (maintain_direct_map)
direct_map.push_back (list_no << 32 | (ids[list_no].size() - 1));
n_add++;
}
if (verbose) {
printf("IndexIVFFlat::add_core: added %ld / %ld vectors\n",
n_add, n);
}
if (!precomputed_idx)
delete [] idx;
ntotal += n_add;
}
void IndexIVFFlat::search_knn_inner_product (
size_t nx,
const float * x,
const long * __restrict keys,
float_minheap_array_t * res) const
{
const size_t k = res->k;
#pragma omp parallel for
for (size_t i = 0; i < nx; i++) {
const float * xi = x + i * d;
const long * keysi = keys + i * nprobe;
float * __restrict simi = res->get_val (i);
long * __restrict idxi = res->get_ids (i);
minheap_heapify (k, simi, idxi);
for (size_t ik = 0; ik < nprobe; ik++) {
long key = keysi[ik]; /* select the list */
if (key < 0) {
// not enough centroids for multiprobe
continue;
}
if (key >= (long) nlist) {
fprintf (stderr, "Invalid key=%ld at ik=%ld nlist=%ld\n",
key, ik, nlist);
throw;
}
const size_t list_size = ids[key].size();
const float * list_vecs = vecs[key].data();
for (size_t j = 0; j < list_size; j++) {
const float * yj = list_vecs + d * j;
float ip = fvec_inner_product (xi, yj, d);
if (ip > simi[0]) {
minheap_pop (k, simi, idxi);
minheap_push (k, simi, idxi, ip, ids[key][j]);
}
}
}
minheap_reorder (k, simi, idxi);
}
}
void IndexIVFFlat::search_knn_L2sqr (
size_t nx,
const float * x,
const long * __restrict keys,
float_maxheap_array_t * res) const
{
const size_t k = res->k;
#pragma omp parallel for
for (size_t i = 0; i < nx; i++) {
const float * xi = x + i * d;
const long * keysi = keys + i * nprobe;
float * __restrict disi = res->get_val (i);
long * __restrict idxi = res->get_ids (i);
maxheap_heapify (k, disi, idxi);
for (size_t ik = 0; ik < nprobe; ik++) {
long key = keysi[ik]; /* select the list */
if (key < 0) {
// not enough centroids for multiprobe
continue;
}
if (key >= (long) nlist) {
fprintf (stderr, "Invalid key=%ld at ik=%ld nlist=%ld\n",
key, ik, nlist);
throw;
}
const size_t list_size = ids[key].size();
const float * list_vecs = vecs[key].data();
for (size_t j = 0; j < list_size; j++) {
const float * yj = list_vecs + d * j;
float disij = fvec_L2sqr (xi, yj, d);
if (disij < disi[0]) {
maxheap_pop (k, disi, idxi);
maxheap_push (k, disi, idxi, disij, ids[key][j]);
}
}
}
maxheap_reorder (k, disi, idxi);
}
}
void IndexIVFFlat::search (idx_t n, const float *x, idx_t k,
float *distances, idx_t *labels) const
{
idx_t * idx = new idx_t [n * nprobe];
quantizer->assign (n, x, idx, nprobe);
if (metric_type == METRIC_INNER_PRODUCT) {
float_minheap_array_t res = {
size_t(n), size_t(k), labels, distances};
search_knn_inner_product (n, x, idx, &res);
} else if (metric_type == METRIC_L2) {
float_maxheap_array_t res = {
size_t(n), size_t(k), labels, distances};
search_knn_L2sqr (n, x, idx, &res);
}
delete [] idx;
}
void IndexIVFFlat::range_search (idx_t nx, const float *x, float radius,
RangeSearchResult *result) const
{
idx_t * keys = new idx_t [nx * nprobe];
quantizer->assign (nx, x, keys, nprobe);
assert (metric_type == METRIC_L2 || !"Only L2 implemented");
#pragma omp parallel
{
RangeSearchPartialResult pres(result);
for (size_t i = 0; i < nx; i++) {
const float * xi = x + i * d;
const long * keysi = keys + i * nprobe;
RangeSearchPartialResult::QueryResult & qres =
pres.new_result (i);
for (size_t ik = 0; ik < nprobe; ik++) {
long key = keysi[ik]; /* select the list */
if (key < 0 || key >= (long) nlist) {
fprintf (stderr, "Invalid key=%ld at ik=%ld nlist=%ld\n",
key, ik, nlist);
throw;
}
const size_t list_size = ids[key].size();
const float * list_vecs = vecs[key].data();
for (size_t j = 0; j < list_size; j++) {
const float * yj = list_vecs + d * j;
float disij = fvec_L2sqr (xi, yj, d);
if (disij < radius) {
qres.add (disij, ids[key][j]);
}
}
}
}
pres.finalize ();
}
delete[] keys;
}
void IndexIVFFlat::merge_from_residuals (IndexIVF &other_in)
{
IndexIVFFlat &other = dynamic_cast<IndexIVFFlat &> (other_in);
for (int i = 0; i < nlist; i++) {
std::vector<float> & src = other.vecs[i];
std::vector<float> & dest = vecs[i];
for (int j = 0; j < src.size(); j++)
dest.push_back (src[j]);
src.clear();
}
}
void IndexIVFFlat::copy_subset_to (IndexIVFFlat & other, int subset_type,
long a1, long a2) const
{
FAISS_ASSERT (nlist == other.nlist);
FAISS_ASSERT (!other.maintain_direct_map);
for (long list_no = 0; list_no < nlist; list_no++) {
const std::vector<idx_t> & ids_in = ids[list_no];
std::vector<idx_t> & ids_out = other.ids[list_no];
const std::vector<float> & vecs_in = vecs[list_no];
std::vector<float> & vecs_out = other.vecs[list_no];
for (long i = 0; i < ids_in.size(); i++) {
idx_t id = ids_in[i];
if (subset_type == 0 && a1 <= id && id < a2) {
ids_out.push_back (id);
vecs_out.insert (vecs_out.end(),
vecs_in.begin() + i * d,
vecs_in.begin() + (i + 1) * d);
other.ntotal++;
}
}
}
}
void IndexIVFFlat::reset()
{
IndexIVF::reset();
for (size_t key = 0; key < nlist; key++) {
vecs[key].clear();
}
}
long IndexIVFFlat::remove_ids (const IDSelector & sel)
{
FAISS_ASSERT (!maintain_direct_map ||
!"direct map remove not implemented");
long nremove = 0;
#pragma omp parallel for reduction(+: nremove)
for (long i = 0; i < nlist; i++) {
std::vector<idx_t> & idsi = ids[i];
float *vecsi = vecs[i].data();
long l = idsi.size(), j = 0;
while (j < l) {
if (sel.is_member (idsi[j])) {
l--;
idsi [j] = idsi [l];
memmove (vecsi + j * d,
vecsi + l * d, d * sizeof (float));
} else {
j++;
}
}
if (l < idsi.size()) {
nremove += idsi.size() - l;
idsi.resize (l);
vecs[i].resize (l * d);
}
}
ntotal -= nremove;
return nremove;
}
void IndexIVFFlat::reconstruct (idx_t key, float * recons) const
{
assert (direct_map.size() == ntotal);
int list_no = direct_map[key] >> 32;
int ofs = direct_map[key] & 0xffffffff;
memcpy (recons, &vecs[list_no][ofs * d], d * sizeof(recons[0]));
}
} // namespace faiss