518 lines
14 KiB
C++
518 lines
14 KiB
C++
|
|
/**
|
|
* Copyright (c) 2015-present, Facebook, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This source code is licensed under the CC-by-NC license found in the
|
|
* LICENSE file in the root directory of this source tree.
|
|
*/
|
|
|
|
/* Copyright 2004-present Facebook. All Rights Reserved.
|
|
Inverted list structure.
|
|
*/
|
|
|
|
#include "IndexIVF.h"
|
|
|
|
#include <cstdio>
|
|
|
|
#include "utils.h"
|
|
#include "hamming.h"
|
|
|
|
#include "FaissAssert.h"
|
|
#include "IndexFlat.h"
|
|
#include "AuxIndexStructures.h"
|
|
|
|
namespace faiss {
|
|
|
|
/*****************************************
|
|
* IndexIVF implementation
|
|
******************************************/
|
|
|
|
|
|
IndexIVF::IndexIVF (Index * quantizer, size_t d, size_t nlist,
|
|
MetricType metric):
|
|
Index (d, metric),
|
|
nlist (nlist),
|
|
nprobe (1),
|
|
quantizer (quantizer),
|
|
quantizer_trains_alone (false),
|
|
own_fields (false),
|
|
ids (nlist),
|
|
maintain_direct_map (false)
|
|
{
|
|
FAISS_ASSERT (d == quantizer->d);
|
|
is_trained = quantizer->is_trained && (quantizer->ntotal == nlist);
|
|
// Spherical by default if the metric is inner_product
|
|
if (metric_type == METRIC_INNER_PRODUCT) {
|
|
cp.spherical = true;
|
|
}
|
|
// here we set a low # iterations because this is typically used
|
|
// for large clusterings (nb this is not used for the MultiIndex,
|
|
// for which quantizer_trains_alone = true)
|
|
cp.niter = 10;
|
|
cp.verbose = verbose;
|
|
|
|
}
|
|
|
|
IndexIVF::IndexIVF ():
|
|
nlist (0), nprobe (1), quantizer (nullptr),
|
|
quantizer_trains_alone (false), own_fields (false),
|
|
maintain_direct_map (false)
|
|
{}
|
|
|
|
|
|
void IndexIVF::add (idx_t n, const float * x)
|
|
{
|
|
add_with_ids (n, x, nullptr);
|
|
}
|
|
|
|
void IndexIVF::make_direct_map ()
|
|
{
|
|
if (maintain_direct_map) return;
|
|
|
|
direct_map.resize (ntotal, -1);
|
|
for (size_t key = 0; key < nlist; key++) {
|
|
const std::vector<long> & idlist = ids[key];
|
|
|
|
for (long ofs = 0; ofs < idlist.size(); ofs++) {
|
|
direct_map [idlist [ofs]] =
|
|
key << 32 | ofs;
|
|
}
|
|
}
|
|
|
|
maintain_direct_map = true;
|
|
}
|
|
|
|
|
|
void IndexIVF::reset ()
|
|
{
|
|
ntotal = 0;
|
|
direct_map.clear();
|
|
for (size_t i = 0; i < ids.size(); i++)
|
|
ids[i].clear();
|
|
}
|
|
|
|
|
|
void IndexIVF::train (idx_t n, const float *x)
|
|
{
|
|
if (quantizer->is_trained && (quantizer->ntotal == nlist)) {
|
|
if (verbose)
|
|
printf ("IVF quantizer does not need training.\n");
|
|
} else if (quantizer_trains_alone) {
|
|
if (verbose)
|
|
printf ("IVF quantizer trains alone...\n");
|
|
quantizer->train (n, x);
|
|
FAISS_ASSERT (quantizer->ntotal == nlist ||
|
|
!"nlist not consistent with quantizer size");
|
|
} else {
|
|
if (verbose)
|
|
printf ("Training IVF quantizer on %ld vectors in %dD\n",
|
|
n, d);
|
|
|
|
Clustering clus (d, nlist, cp);
|
|
|
|
quantizer->reset();
|
|
clus.train (n, x, *quantizer);
|
|
quantizer->is_trained = true;
|
|
}
|
|
if (verbose)
|
|
printf ("Training IVF residual\n");
|
|
|
|
train_residual (n, x);
|
|
is_trained = true;
|
|
}
|
|
|
|
void IndexIVF::train_residual (idx_t n, const float *x)
|
|
{
|
|
if (verbose)
|
|
printf ("IndexIVF: no residual training\n");
|
|
// does nothing by default
|
|
}
|
|
|
|
|
|
|
|
double IndexIVF::imbalance_factor () const
|
|
{
|
|
std::vector<int> hist (nlist);
|
|
for (int i = 0; i < nlist; i++) {
|
|
hist[i] = ids[i].size();
|
|
}
|
|
return faiss::imbalance_factor (nlist, hist.data());
|
|
}
|
|
|
|
void IndexIVF::print_stats () const
|
|
{
|
|
std::vector<int> sizes(40);
|
|
for (int i = 0; i < nlist; i++) {
|
|
for (int j = 0; j < sizes.size(); j++) {
|
|
if ((ids[i].size() >> j) == 0) {
|
|
sizes[j]++;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
for (int i = 0; i < sizes.size(); i++) {
|
|
if (sizes[i]) {
|
|
printf ("list size in < %d: %d instances\n",
|
|
1 << i, sizes[i]);
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
void IndexIVF::merge_from (IndexIVF &other, idx_t add_id)
|
|
{
|
|
// minimal sanity checks
|
|
FAISS_ASSERT (other.d == d);
|
|
FAISS_ASSERT (other.nlist == nlist);
|
|
FAISS_ASSERT ((!maintain_direct_map && !other.maintain_direct_map) ||
|
|
!"direct map copy not implemented");
|
|
FAISS_ASSERT (typeid (*this) == typeid (other) ||
|
|
!"can only merge indexes of the same type");
|
|
for (long i = 0; i < nlist; i++) {
|
|
std::vector<idx_t> & src = other.ids[i];
|
|
std::vector<idx_t> & dest = ids[i];
|
|
for (long j = 0; j < src.size(); j++)
|
|
dest.push_back (src[j] + add_id);
|
|
src.clear();
|
|
}
|
|
merge_from_residuals (other);
|
|
ntotal += other.ntotal;
|
|
other.ntotal = 0;
|
|
}
|
|
|
|
|
|
|
|
|
|
IndexIVF::~IndexIVF()
|
|
{
|
|
if (own_fields) delete quantizer;
|
|
}
|
|
|
|
|
|
|
|
/*****************************************
|
|
* IndexIVFFlat implementation
|
|
******************************************/
|
|
|
|
IndexIVFFlat::IndexIVFFlat (Index * quantizer,
|
|
size_t d, size_t nlist, MetricType metric):
|
|
IndexIVF (quantizer, d, nlist, metric)
|
|
{
|
|
vecs.resize (nlist);
|
|
set_typename();
|
|
}
|
|
|
|
|
|
void IndexIVFFlat::set_typename ()
|
|
{
|
|
std::stringstream s;
|
|
if (metric_type == METRIC_INNER_PRODUCT)
|
|
s << "IvfIP";
|
|
else if (metric_type == METRIC_L2)
|
|
s << "IvfL2";
|
|
else s << "??";
|
|
s << "[" << nlist << ":" << quantizer->index_typename << "]";
|
|
index_typename = s.str();
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void IndexIVFFlat::add_with_ids (idx_t n, const float * x, const long *xids)
|
|
{
|
|
add_core (n, x, xids, nullptr);
|
|
}
|
|
|
|
void IndexIVFFlat::add_core (idx_t n, const float * x, const long *xids,
|
|
const long *precomputed_idx)
|
|
|
|
{
|
|
FAISS_ASSERT (is_trained);
|
|
const long * idx;
|
|
|
|
if (precomputed_idx) {
|
|
idx = precomputed_idx;
|
|
} else {
|
|
long * idx0 = new long [n];
|
|
quantizer->assign (n, x, idx0);
|
|
idx = idx0;
|
|
}
|
|
long n_add = 0;
|
|
for (size_t i = 0; i < n; i++) {
|
|
long id = xids ? xids[i] : ntotal + i;
|
|
long list_no = idx [i];
|
|
if (list_no < 0)
|
|
continue;
|
|
FAISS_ASSERT (list_no < nlist);
|
|
|
|
ids[list_no].push_back (id);
|
|
const float *xi = x + i * d;
|
|
/* store the vectors */
|
|
for (size_t j = 0 ; j < d ; j++)
|
|
vecs[list_no].push_back (xi [j]);
|
|
|
|
if (maintain_direct_map)
|
|
direct_map.push_back (list_no << 32 | (ids[list_no].size() - 1));
|
|
n_add++;
|
|
}
|
|
if (verbose) {
|
|
printf("IndexIVFFlat::add_core: added %ld / %ld vectors\n",
|
|
n_add, n);
|
|
}
|
|
if (!precomputed_idx)
|
|
delete [] idx;
|
|
ntotal += n_add;
|
|
}
|
|
|
|
|
|
|
|
|
|
void IndexIVFFlat::search_knn_inner_product (
|
|
size_t nx,
|
|
const float * x,
|
|
const long * __restrict keys,
|
|
float_minheap_array_t * res) const
|
|
{
|
|
|
|
const size_t k = res->k;
|
|
|
|
#pragma omp parallel for
|
|
for (size_t i = 0; i < nx; i++) {
|
|
const float * xi = x + i * d;
|
|
const long * keysi = keys + i * nprobe;
|
|
float * __restrict simi = res->get_val (i);
|
|
long * __restrict idxi = res->get_ids (i);
|
|
minheap_heapify (k, simi, idxi);
|
|
|
|
for (size_t ik = 0; ik < nprobe; ik++) {
|
|
long key = keysi[ik]; /* select the list */
|
|
if (key < 0) {
|
|
// not enough centroids for multiprobe
|
|
continue;
|
|
}
|
|
if (key >= (long) nlist) {
|
|
fprintf (stderr, "Invalid key=%ld at ik=%ld nlist=%ld\n",
|
|
key, ik, nlist);
|
|
throw;
|
|
}
|
|
|
|
const size_t list_size = ids[key].size();
|
|
const float * list_vecs = vecs[key].data();
|
|
|
|
for (size_t j = 0; j < list_size; j++) {
|
|
const float * yj = list_vecs + d * j;
|
|
float ip = fvec_inner_product (xi, yj, d);
|
|
if (ip > simi[0]) {
|
|
minheap_pop (k, simi, idxi);
|
|
minheap_push (k, simi, idxi, ip, ids[key][j]);
|
|
}
|
|
}
|
|
}
|
|
minheap_reorder (k, simi, idxi);
|
|
}
|
|
}
|
|
|
|
|
|
void IndexIVFFlat::search_knn_L2sqr (
|
|
size_t nx,
|
|
const float * x,
|
|
const long * __restrict keys,
|
|
float_maxheap_array_t * res) const
|
|
{
|
|
const size_t k = res->k;
|
|
|
|
#pragma omp parallel for
|
|
for (size_t i = 0; i < nx; i++) {
|
|
const float * xi = x + i * d;
|
|
const long * keysi = keys + i * nprobe;
|
|
float * __restrict disi = res->get_val (i);
|
|
long * __restrict idxi = res->get_ids (i);
|
|
maxheap_heapify (k, disi, idxi);
|
|
|
|
for (size_t ik = 0; ik < nprobe; ik++) {
|
|
long key = keysi[ik]; /* select the list */
|
|
if (key < 0) {
|
|
// not enough centroids for multiprobe
|
|
continue;
|
|
}
|
|
if (key >= (long) nlist) {
|
|
fprintf (stderr, "Invalid key=%ld at ik=%ld nlist=%ld\n",
|
|
key, ik, nlist);
|
|
throw;
|
|
}
|
|
|
|
const size_t list_size = ids[key].size();
|
|
const float * list_vecs = vecs[key].data();
|
|
|
|
for (size_t j = 0; j < list_size; j++) {
|
|
const float * yj = list_vecs + d * j;
|
|
float disij = fvec_L2sqr (xi, yj, d);
|
|
if (disij < disi[0]) {
|
|
maxheap_pop (k, disi, idxi);
|
|
maxheap_push (k, disi, idxi, disij, ids[key][j]);
|
|
}
|
|
}
|
|
}
|
|
maxheap_reorder (k, disi, idxi);
|
|
}
|
|
}
|
|
|
|
|
|
void IndexIVFFlat::search (idx_t n, const float *x, idx_t k,
|
|
float *distances, idx_t *labels) const
|
|
{
|
|
idx_t * idx = new idx_t [n * nprobe];
|
|
quantizer->assign (n, x, idx, nprobe);
|
|
|
|
if (metric_type == METRIC_INNER_PRODUCT) {
|
|
float_minheap_array_t res = {
|
|
size_t(n), size_t(k), labels, distances};
|
|
search_knn_inner_product (n, x, idx, &res);
|
|
|
|
} else if (metric_type == METRIC_L2) {
|
|
float_maxheap_array_t res = {
|
|
size_t(n), size_t(k), labels, distances};
|
|
search_knn_L2sqr (n, x, idx, &res);
|
|
}
|
|
|
|
delete [] idx;
|
|
}
|
|
|
|
|
|
void IndexIVFFlat::range_search (idx_t nx, const float *x, float radius,
|
|
RangeSearchResult *result) const
|
|
{
|
|
idx_t * keys = new idx_t [nx * nprobe];
|
|
quantizer->assign (nx, x, keys, nprobe);
|
|
|
|
assert (metric_type == METRIC_L2 || !"Only L2 implemented");
|
|
#pragma omp parallel
|
|
{
|
|
RangeSearchPartialResult pres(result);
|
|
|
|
for (size_t i = 0; i < nx; i++) {
|
|
const float * xi = x + i * d;
|
|
const long * keysi = keys + i * nprobe;
|
|
|
|
RangeSearchPartialResult::QueryResult & qres =
|
|
pres.new_result (i);
|
|
|
|
for (size_t ik = 0; ik < nprobe; ik++) {
|
|
long key = keysi[ik]; /* select the list */
|
|
if (key < 0 || key >= (long) nlist) {
|
|
fprintf (stderr, "Invalid key=%ld at ik=%ld nlist=%ld\n",
|
|
key, ik, nlist);
|
|
throw;
|
|
}
|
|
|
|
const size_t list_size = ids[key].size();
|
|
const float * list_vecs = vecs[key].data();
|
|
|
|
for (size_t j = 0; j < list_size; j++) {
|
|
const float * yj = list_vecs + d * j;
|
|
float disij = fvec_L2sqr (xi, yj, d);
|
|
if (disij < radius) {
|
|
qres.add (disij, ids[key][j]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
pres.finalize ();
|
|
}
|
|
delete[] keys;
|
|
}
|
|
|
|
void IndexIVFFlat::merge_from_residuals (IndexIVF &other_in)
|
|
{
|
|
IndexIVFFlat &other = dynamic_cast<IndexIVFFlat &> (other_in);
|
|
for (int i = 0; i < nlist; i++) {
|
|
std::vector<float> & src = other.vecs[i];
|
|
std::vector<float> & dest = vecs[i];
|
|
for (int j = 0; j < src.size(); j++)
|
|
dest.push_back (src[j]);
|
|
src.clear();
|
|
}
|
|
}
|
|
|
|
void IndexIVFFlat::copy_subset_to (IndexIVFFlat & other, int subset_type,
|
|
long a1, long a2) const
|
|
{
|
|
FAISS_ASSERT (nlist == other.nlist);
|
|
FAISS_ASSERT (!other.maintain_direct_map);
|
|
|
|
for (long list_no = 0; list_no < nlist; list_no++) {
|
|
const std::vector<idx_t> & ids_in = ids[list_no];
|
|
std::vector<idx_t> & ids_out = other.ids[list_no];
|
|
const std::vector<float> & vecs_in = vecs[list_no];
|
|
std::vector<float> & vecs_out = other.vecs[list_no];
|
|
|
|
for (long i = 0; i < ids_in.size(); i++) {
|
|
idx_t id = ids_in[i];
|
|
if (subset_type == 0 && a1 <= id && id < a2) {
|
|
ids_out.push_back (id);
|
|
vecs_out.insert (vecs_out.end(),
|
|
vecs_in.begin() + i * d,
|
|
vecs_in.begin() + (i + 1) * d);
|
|
other.ntotal++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
void IndexIVFFlat::reset()
|
|
{
|
|
IndexIVF::reset();
|
|
for (size_t key = 0; key < nlist; key++) {
|
|
vecs[key].clear();
|
|
}
|
|
}
|
|
|
|
long IndexIVFFlat::remove_ids (const IDSelector & sel)
|
|
{
|
|
FAISS_ASSERT (!maintain_direct_map ||
|
|
!"direct map remove not implemented");
|
|
long nremove = 0;
|
|
#pragma omp parallel for reduction(+: nremove)
|
|
for (long i = 0; i < nlist; i++) {
|
|
std::vector<idx_t> & idsi = ids[i];
|
|
float *vecsi = vecs[i].data();
|
|
|
|
long l = idsi.size(), j = 0;
|
|
while (j < l) {
|
|
if (sel.is_member (idsi[j])) {
|
|
l--;
|
|
idsi [j] = idsi [l];
|
|
memmove (vecsi + j * d,
|
|
vecsi + l * d, d * sizeof (float));
|
|
} else {
|
|
j++;
|
|
}
|
|
}
|
|
if (l < idsi.size()) {
|
|
nremove += idsi.size() - l;
|
|
idsi.resize (l);
|
|
vecs[i].resize (l * d);
|
|
}
|
|
}
|
|
ntotal -= nremove;
|
|
return nremove;
|
|
}
|
|
|
|
|
|
void IndexIVFFlat::reconstruct (idx_t key, float * recons) const
|
|
{
|
|
assert (direct_map.size() == ntotal);
|
|
int list_no = direct_map[key] >> 32;
|
|
int ofs = direct_map[key] & 0xffffffff;
|
|
memcpy (recons, &vecs[list_no][ofs * d], d * sizeof(recons[0]));
|
|
}
|
|
|
|
|
|
} // namespace faiss
|