faiss/tests/test_index.py

1093 lines
32 KiB
Python

# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
"""this is a basic test script for simple indices work"""
from __future__ import absolute_import, division, print_function
# no unicode_literals because it messes up in py2
import numpy as np
import unittest
import faiss
import tempfile
import os
import re
import warnings
from common_faiss_tests import get_dataset, get_dataset_2
class TestModuleInterface(unittest.TestCase):
def test_version_attribute(self):
assert hasattr(faiss, '__version__')
assert re.match('^\\d+\\.\\d+\\.\\d+$', faiss.__version__)
class TestIndexFlat(unittest.TestCase):
def do_test(self, nq, metric_type=faiss.METRIC_L2, k=10):
d = 32
nb = 1000
nt = 0
(xt, xb, xq) = get_dataset_2(d, nt, nb, nq)
index = faiss.IndexFlat(d, metric_type)
### k-NN search
index.add(xb)
D1, I1 = index.search(xq, k)
if metric_type == faiss.METRIC_L2:
all_dis = ((xq.reshape(nq, 1, d) - xb.reshape(1, nb, d)) ** 2).sum(2)
Iref = all_dis.argsort(axis=1)[:, :k]
else:
all_dis = np.dot(xq, xb.T)
Iref = all_dis.argsort(axis=1)[:, ::-1][:, :k]
Dref = all_dis[np.arange(nq)[:, None], Iref]
self.assertLessEqual((Iref != I1).sum(), Iref.size * 0.0001)
# np.testing.assert_equal(Iref, I1)
np.testing.assert_almost_equal(Dref, D1, decimal=5)
### Range search
radius = float(np.median(Dref[:, -1]))
lims, D2, I2 = index.range_search(xq, radius)
for i in range(nq):
l0, l1 = lims[i:i + 2]
_, Il = D2[l0:l1], I2[l0:l1]
if metric_type == faiss.METRIC_L2:
Ilref, = np.where(all_dis[i] < radius)
else:
Ilref, = np.where(all_dis[i] > radius)
Il.sort()
Ilref.sort()
np.testing.assert_equal(Il, Ilref)
np.testing.assert_almost_equal(
all_dis[i, Ilref], D2[l0:l1],
decimal=5
)
def set_blas_blocks(self, small):
if small:
faiss.cvar.distance_compute_blas_query_bs = 16
faiss.cvar.distance_compute_blas_database_bs = 12
else:
faiss.cvar.distance_compute_blas_query_bs = 4096
faiss.cvar.distance_compute_blas_database_bs = 1024
def test_with_blas(self):
self.set_blas_blocks(small=True)
self.do_test(200)
self.set_blas_blocks(small=False)
def test_noblas(self):
self.do_test(10)
def test_with_blas_ip(self):
self.set_blas_blocks(small=True)
self.do_test(200, faiss.METRIC_INNER_PRODUCT)
self.set_blas_blocks(small=False)
def test_noblas_ip(self):
self.do_test(10, faiss.METRIC_INNER_PRODUCT)
def test_noblas_reservoir(self):
self.do_test(10, k=150)
def test_with_blas_reservoir(self):
self.do_test(200, k=150)
def test_noblas_reservoir_ip(self):
self.do_test(10, faiss.METRIC_INNER_PRODUCT, k=150)
def test_with_blas_reservoir_ip(self):
self.do_test(200, faiss.METRIC_INNER_PRODUCT, k=150)
class EvalIVFPQAccuracy(unittest.TestCase):
def test_IndexIVFPQ(self):
d = 32
nb = 1000
nt = 1500
nq = 200
(xt, xb, xq) = get_dataset_2(d, nt, nb, nq)
gt_index = faiss.IndexFlatL2(d)
gt_index.add(xb)
D, gt_nns = gt_index.search(xq, 1)
coarse_quantizer = faiss.IndexFlatL2(d)
index = faiss.IndexIVFPQ(coarse_quantizer, d, 32, 8, 8)
index.cp.min_points_per_centroid = 5 # quiet warning
index.train(xt)
index.add(xb)
index.nprobe = 4
D, nns = index.search(xq, 10)
n_ok = (nns == gt_nns).sum()
nq = xq.shape[0]
self.assertGreater(n_ok, nq * 0.66)
# check that and Index2Layer gives the same reconstruction
# this is a bit fragile: it assumes 2 runs of training give
# the exact same result.
index2 = faiss.Index2Layer(coarse_quantizer, 32, 8)
if True:
index2.train(xt)
else:
index2.pq = index.pq
index2.is_trained = True
index2.add(xb)
ref_recons = index.reconstruct_n(0, nb)
new_recons = index2.reconstruct_n(0, nb)
self.assertTrue(np.all(ref_recons == new_recons))
def test_IMI(self):
d = 32
nb = 1000
nt = 1500
nq = 200
(xt, xb, xq) = get_dataset_2(d, nt, nb, nq)
d = xt.shape[1]
gt_index = faiss.IndexFlatL2(d)
gt_index.add(xb)
D, gt_nns = gt_index.search(xq, 1)
nbits = 5
coarse_quantizer = faiss.MultiIndexQuantizer(d, 2, nbits)
index = faiss.IndexIVFPQ(coarse_quantizer, d, (1 << nbits) ** 2, 8, 8)
index.quantizer_trains_alone = 1
index.train(xt)
index.add(xb)
index.nprobe = 100
D, nns = index.search(xq, 10)
n_ok = (nns == gt_nns).sum()
# Should return 166 on mac, and 170 on linux.
self.assertGreater(n_ok, 165)
############# replace with explicit assignment indexes
nbits = 5
pq = coarse_quantizer.pq
centroids = faiss.vector_to_array(pq.centroids)
centroids = centroids.reshape(pq.M, pq.ksub, pq.dsub)
ai0 = faiss.IndexFlatL2(pq.dsub)
ai0.add(centroids[0])
ai1 = faiss.IndexFlatL2(pq.dsub)
ai1.add(centroids[1])
coarse_quantizer_2 = faiss.MultiIndexQuantizer2(d, nbits, ai0, ai1)
coarse_quantizer_2.pq = pq
coarse_quantizer_2.is_trained = True
index.quantizer = coarse_quantizer_2
index.reset()
index.add(xb)
D, nns = index.search(xq, 10)
n_ok = (nns == gt_nns).sum()
# should return the same result
self.assertGreater(n_ok, 165)
def test_IMI_2(self):
d = 32
nb = 1000
nt = 1500
nq = 200
(xt, xb, xq) = get_dataset_2(d, nt, nb, nq)
d = xt.shape[1]
gt_index = faiss.IndexFlatL2(d)
gt_index.add(xb)
D, gt_nns = gt_index.search(xq, 1)
############# redo including training
nbits = 5
ai0 = faiss.IndexFlatL2(int(d / 2))
ai1 = faiss.IndexFlatL2(int(d / 2))
coarse_quantizer = faiss.MultiIndexQuantizer2(d, nbits, ai0, ai1)
index = faiss.IndexIVFPQ(coarse_quantizer, d, (1 << nbits) ** 2, 8, 8)
index.quantizer_trains_alone = 1
index.train(xt)
index.add(xb)
index.nprobe = 100
D, nns = index.search(xq, 10)
n_ok = (nns == gt_nns).sum()
# should return the same result
self.assertGreater(n_ok, 165)
class TestMultiIndexQuantizer(unittest.TestCase):
def test_search_k1(self):
# verify codepath for k = 1 and k > 1
d = 64
nb = 0
nt = 1500
nq = 200
(xt, xb, xq) = get_dataset(d, nb, nt, nq)
miq = faiss.MultiIndexQuantizer(d, 2, 6)
miq.train(xt)
D1, I1 = miq.search(xq, 1)
D5, I5 = miq.search(xq, 5)
self.assertEqual(np.abs(I1[:, :1] - I5[:, :1]).max(), 0)
self.assertEqual(np.abs(D1[:, :1] - D5[:, :1]).max(), 0)
class TestScalarQuantizer(unittest.TestCase):
def test_4variants_ivf(self):
d = 32
nt = 2500
nq = 400
nb = 5000
(xt, xb, xq) = get_dataset_2(d, nt, nb, nq)
# common quantizer
quantizer = faiss.IndexFlatL2(d)
ncent = 64
index_gt = faiss.IndexFlatL2(d)
index_gt.add(xb)
D, I_ref = index_gt.search(xq, 10)
nok = {}
index = faiss.IndexIVFFlat(quantizer, d, ncent,
faiss.METRIC_L2)
index.cp.min_points_per_centroid = 5 # quiet warning
index.nprobe = 4
index.train(xt)
index.add(xb)
D, I = index.search(xq, 10)
nok['flat'] = (I[:, 0] == I_ref[:, 0]).sum()
for qname in "QT_4bit QT_4bit_uniform QT_8bit QT_8bit_uniform QT_fp16".split():
qtype = getattr(faiss.ScalarQuantizer, qname)
index = faiss.IndexIVFScalarQuantizer(quantizer, d, ncent,
qtype, faiss.METRIC_L2)
index.nprobe = 4
index.train(xt)
index.add(xb)
D, I = index.search(xq, 10)
nok[qname] = (I[:, 0] == I_ref[:, 0]).sum()
print(nok, nq)
self.assertGreaterEqual(nok['flat'], nq * 0.6)
# The tests below are a bit fragile, it happens that the
# ordering between uniform and non-uniform are reverted,
# probably because the dataset is small, which introduces
# jitter
self.assertGreaterEqual(nok['flat'], nok['QT_8bit'])
self.assertGreaterEqual(nok['QT_8bit'], nok['QT_4bit'])
self.assertGreaterEqual(nok['QT_8bit'], nok['QT_8bit_uniform'])
self.assertGreaterEqual(nok['QT_4bit'], nok['QT_4bit_uniform'])
self.assertGreaterEqual(nok['QT_fp16'], nok['QT_8bit'])
def test_4variants(self):
d = 32
nt = 2500
nq = 400
nb = 5000
(xt, xb, xq) = get_dataset(d, nb, nt, nq)
index_gt = faiss.IndexFlatL2(d)
index_gt.add(xb)
D_ref, I_ref = index_gt.search(xq, 10)
nok = {}
for qname in "QT_4bit QT_4bit_uniform QT_8bit QT_8bit_uniform QT_fp16".split():
qtype = getattr(faiss.ScalarQuantizer, qname)
index = faiss.IndexScalarQuantizer(d, qtype, faiss.METRIC_L2)
index.train(xt)
index.add(xb)
D, I = index.search(xq, 10)
nok[qname] = (I[:, 0] == I_ref[:, 0]).sum()
print(nok, nq)
self.assertGreaterEqual(nok['QT_8bit'], nq * 0.9)
self.assertGreaterEqual(nok['QT_8bit'], nok['QT_4bit'])
self.assertGreaterEqual(nok['QT_8bit'], nok['QT_8bit_uniform'])
self.assertGreaterEqual(nok['QT_4bit'], nok['QT_4bit_uniform'])
self.assertGreaterEqual(nok['QT_fp16'], nok['QT_8bit'])
class TestRangeSearch(unittest.TestCase):
def test_range_search(self):
d = 4
nt = 100
nq = 10
nb = 50
(xt, xb, xq) = get_dataset(d, nb, nt, nq)
index = faiss.IndexFlatL2(d)
index.add(xb)
Dref, Iref = index.search(xq, 5)
thresh = 0.1 # *squared* distance
lims, D, I = index.range_search(xq, thresh)
for i in range(nq):
Iline = I[lims[i]:lims[i + 1]]
Dline = D[lims[i]:lims[i + 1]]
for j, dis in zip(Iref[i], Dref[i]):
if dis < thresh:
li, = np.where(Iline == j)
self.assertTrue(li.size == 1)
idx = li[0]
self.assertGreaterEqual(1e-4, abs(Dline[idx] - dis))
class TestSearchAndReconstruct(unittest.TestCase):
def run_search_and_reconstruct(self, index, xb, xq, k=10, eps=None):
n, d = xb.shape
assert xq.shape[1] == d
assert index.d == d
D_ref, I_ref = index.search(xq, k)
R_ref = index.reconstruct_n(0, n)
D, I, R = index.search_and_reconstruct(xq, k)
np.testing.assert_almost_equal(D, D_ref, decimal=5)
self.assertTrue((I == I_ref).all())
self.assertEqual(R.shape[:2], I.shape)
self.assertEqual(R.shape[2], d)
# (n, k, ..) -> (n * k, ..)
I_flat = I.reshape(-1)
R_flat = R.reshape(-1, d)
# Filter out -1s when not enough results
R_flat = R_flat[I_flat >= 0]
I_flat = I_flat[I_flat >= 0]
recons_ref_err = np.mean(np.linalg.norm(R_flat - R_ref[I_flat]))
self.assertLessEqual(recons_ref_err, 1e-6)
def norm1(x):
return np.sqrt((x ** 2).sum(axis=1))
recons_err = np.mean(norm1(R_flat - xb[I_flat]))
print('Reconstruction error = %.3f' % recons_err)
if eps is not None:
self.assertLessEqual(recons_err, eps)
return D, I, R
def test_IndexFlat(self):
d = 32
nb = 1000
nt = 1500
nq = 200
(xt, xb, xq) = get_dataset(d, nb, nt, nq)
index = faiss.IndexFlatL2(d)
index.add(xb)
self.run_search_and_reconstruct(index, xb, xq, eps=0.0)
def test_IndexIVFFlat(self):
d = 32
nb = 1000
nt = 1500
nq = 200
(xt, xb, xq) = get_dataset(d, nb, nt, nq)
quantizer = faiss.IndexFlatL2(d)
index = faiss.IndexIVFFlat(quantizer, d, 32, faiss.METRIC_L2)
index.cp.min_points_per_centroid = 5 # quiet warning
index.nprobe = 4
index.train(xt)
index.add(xb)
self.run_search_and_reconstruct(index, xb, xq, eps=0.0)
def test_IndexIVFPQ(self):
d = 32
nb = 1000
nt = 1500
nq = 200
(xt, xb, xq) = get_dataset(d, nb, nt, nq)
quantizer = faiss.IndexFlatL2(d)
index = faiss.IndexIVFPQ(quantizer, d, 32, 8, 8)
index.cp.min_points_per_centroid = 5 # quiet warning
index.nprobe = 4
index.train(xt)
index.add(xb)
self.run_search_and_reconstruct(index, xb, xq, eps=1.0)
def test_MultiIndex(self):
d = 32
nb = 1000
nt = 1500
nq = 200
(xt, xb, xq) = get_dataset(d, nb, nt, nq)
index = faiss.index_factory(d, "IMI2x5,PQ8np")
faiss.ParameterSpace().set_index_parameter(index, "nprobe", 4)
index.train(xt)
index.add(xb)
self.run_search_and_reconstruct(index, xb, xq, eps=1.0)
def test_IndexTransform(self):
d = 32
nb = 1000
nt = 1500
nq = 200
(xt, xb, xq) = get_dataset(d, nb, nt, nq)
index = faiss.index_factory(d, "L2norm,PCA8,IVF32,PQ8np")
faiss.ParameterSpace().set_index_parameter(index, "nprobe", 4)
index.train(xt)
index.add(xb)
self.run_search_and_reconstruct(index, xb, xq)
class TestHNSW(unittest.TestCase):
def __init__(self, *args, **kwargs):
unittest.TestCase.__init__(self, *args, **kwargs)
d = 32
nt = 0
nb = 1500
nq = 500
(_, self.xb, self.xq) = get_dataset_2(d, nt, nb, nq)
index = faiss.IndexFlatL2(d)
index.add(self.xb)
Dref, Iref = index.search(self.xq, 1)
self.Iref = Iref
def test_hnsw(self):
d = self.xq.shape[1]
index = faiss.IndexHNSWFlat(d, 16)
index.add(self.xb)
Dhnsw, Ihnsw = index.search(self.xq, 1)
self.assertGreaterEqual((self.Iref == Ihnsw).sum(), 460)
self.io_and_retest(index, Dhnsw, Ihnsw)
def test_hnsw_unbounded_queue(self):
d = self.xq.shape[1]
index = faiss.IndexHNSWFlat(d, 16)
index.add(self.xb)
index.search_bounded_queue = False
Dhnsw, Ihnsw = index.search(self.xq, 1)
self.assertGreaterEqual((self.Iref == Ihnsw).sum(), 460)
self.io_and_retest(index, Dhnsw, Ihnsw)
def io_and_retest(self, index, Dhnsw, Ihnsw):
fd, tmpfile = tempfile.mkstemp()
os.close(fd)
try:
faiss.write_index(index, tmpfile)
index2 = faiss.read_index(tmpfile)
finally:
if os.path.exists(tmpfile):
os.unlink(tmpfile)
Dhnsw2, Ihnsw2 = index2.search(self.xq, 1)
self.assertTrue(np.all(Dhnsw2 == Dhnsw))
self.assertTrue(np.all(Ihnsw2 == Ihnsw))
# also test clone
index3 = faiss.clone_index(index)
Dhnsw3, Ihnsw3 = index3.search(self.xq, 1)
self.assertTrue(np.all(Dhnsw3 == Dhnsw))
self.assertTrue(np.all(Ihnsw3 == Ihnsw))
def test_hnsw_2level(self):
d = self.xq.shape[1]
quant = faiss.IndexFlatL2(d)
index = faiss.IndexHNSW2Level(quant, 256, 8, 8)
index.train(self.xb)
index.add(self.xb)
Dhnsw, Ihnsw = index.search(self.xq, 1)
self.assertGreaterEqual((self.Iref == Ihnsw).sum(), 307)
self.io_and_retest(index, Dhnsw, Ihnsw)
def test_add_0_vecs(self):
index = faiss.IndexHNSWFlat(10, 16)
zero_vecs = np.zeros((0, 10), dtype='float32')
# infinite loop
index.add(zero_vecs)
def test_hnsw_IP(self):
d = self.xq.shape[1]
index_IP = faiss.IndexFlatIP(d)
index_IP.add(self.xb)
Dref, Iref = index_IP.search(self.xq, 1)
index = faiss.IndexHNSWFlat(d, 16, faiss.METRIC_INNER_PRODUCT)
index.add(self.xb)
Dhnsw, Ihnsw = index.search(self.xq, 1)
print('nb equal: ', (Iref == Ihnsw).sum())
self.assertGreaterEqual((Iref == Ihnsw).sum(), 470)
mask = Iref[:, 0] == Ihnsw[:, 0]
assert np.allclose(Dref[mask, 0], Dhnsw[mask, 0])
class TestNSG(unittest.TestCase):
def __init__(self, *args, **kwargs):
unittest.TestCase.__init__(self, *args, **kwargs)
d = 32
nt = 0
nb = 1500
nq = 500
self.GK = 32
_, self.xb, self.xq = get_dataset_2(d, nt, nb, nq)
def make_knn_graph(self, metric):
n = self.xb.shape[0]
d = self.xb.shape[1]
index = faiss.IndexFlat(d, metric)
index.add(self.xb)
_, I = index.search(self.xb, self.GK + 1)
knn_graph = np.zeros((n, self.GK), dtype=np.int64)
# For the inner product distance, the distance between a vector and itself
# may not be the smallest, so it is not guaranteed that I[:, 0] is the query itself.
for i in range(n):
cnt = 0
for j in range(self.GK + 1):
if I[i, j] != i:
knn_graph[i, cnt] = I[i, j]
cnt += 1
if cnt == self.GK:
break
return knn_graph
def subtest_io_and_clone(self, index, Dnsg, Insg):
fd, tmpfile = tempfile.mkstemp()
os.close(fd)
try:
faiss.write_index(index, tmpfile)
index2 = faiss.read_index(tmpfile)
finally:
if os.path.exists(tmpfile):
os.unlink(tmpfile)
Dnsg2, Insg2 = index2.search(self.xq, 1)
np.testing.assert_array_equal(Dnsg2, Dnsg)
np.testing.assert_array_equal(Insg2, Insg)
# also test clone
index3 = faiss.clone_index(index)
Dnsg3, Insg3 = index3.search(self.xq, 1)
np.testing.assert_array_equal(Dnsg3, Dnsg)
np.testing.assert_array_equal(Insg3, Insg)
def subtest_connectivity(self, index, nb):
vt = faiss.VisitedTable(nb)
count = index.nsg.dfs(vt, index.nsg.enterpoint, 0)
self.assertEqual(count, nb)
def subtest_add(self, build_type, thresh, metric=faiss.METRIC_L2):
d = self.xq.shape[1]
metrics = {faiss.METRIC_L2: 'L2',
faiss.METRIC_INNER_PRODUCT: 'IP'}
flat_index = faiss.IndexFlat(d, metric)
flat_index.add(self.xb)
Dref, Iref = flat_index.search(self.xq, 1)
index = faiss.IndexNSGFlat(d, 16, metric)
index.verbose = True
index.build_type = build_type
index.GK = self.GK
index.add(self.xb)
Dnsg, Insg = index.search(self.xq, 1)
recalls = (Iref == Insg).sum()
print('metric: {}, nb equal: {}'.format(metrics[metric], recalls))
self.assertGreaterEqual(recalls, thresh)
self.subtest_connectivity(index, self.xb.shape[0])
self.subtest_io_and_clone(index, Dnsg, Insg)
def subtest_build(self, knn_graph, thresh, metric=faiss.METRIC_L2):
d = self.xq.shape[1]
metrics = {faiss.METRIC_L2: 'L2',
faiss.METRIC_INNER_PRODUCT: 'IP'}
flat_index = faiss.IndexFlat(d, metric)
flat_index.add(self.xb)
Dref, Iref = flat_index.search(self.xq, 1)
index = faiss.IndexNSGFlat(d, 16, metric)
index.verbose = True
index.build(self.xb, knn_graph)
Dnsg, Insg = index.search(self.xq, 1)
recalls = (Iref == Insg).sum()
print('metric: {}, nb equal: {}'.format(metrics[metric], recalls))
self.assertGreaterEqual(recalls, thresh)
self.subtest_connectivity(index, self.xb.shape[0])
def test_add_bruteforce_L2(self):
self.subtest_add(0, 475, faiss.METRIC_L2)
def test_add_nndescent_L2(self):
self.subtest_add(1, 475, faiss.METRIC_L2)
def test_add_bruteforce_IP(self):
self.subtest_add(0, 480, faiss.METRIC_INNER_PRODUCT)
def test_add_nndescent_IP(self):
self.subtest_add(1, 480, faiss.METRIC_INNER_PRODUCT)
def test_build_L2(self):
knn_graph = self.make_knn_graph(faiss.METRIC_L2)
self.subtest_build(knn_graph, 475, faiss.METRIC_L2)
def test_build_IP(self):
knn_graph = self.make_knn_graph(faiss.METRIC_INNER_PRODUCT)
self.subtest_build(knn_graph, 480, faiss.METRIC_INNER_PRODUCT)
def test_build_invalid_knng(self):
"""Make some invalid entries in the input knn graph.
It would cause a warning but IndexNSG should be able
to handel this.
"""
knn_graph = self.make_knn_graph(faiss.METRIC_L2)
knn_graph[:100, 5] = -111
self.subtest_build(knn_graph, 475, faiss.METRIC_L2)
knn_graph = self.make_knn_graph(faiss.METRIC_INNER_PRODUCT)
knn_graph[:100, 5] = -111
self.subtest_build(knn_graph, 480, faiss.METRIC_INNER_PRODUCT)
def test_reset(self):
"""test IndexNSG.reset()"""
d = self.xq.shape[1]
metrics = {faiss.METRIC_L2: 'L2',
faiss.METRIC_INNER_PRODUCT: 'IP'}
metric = faiss.METRIC_L2
flat_index = faiss.IndexFlat(d, metric)
flat_index.add(self.xb)
Dref, Iref = flat_index.search(self.xq, 1)
index = faiss.IndexNSGFlat(d, 16)
index.verbose = True
index.GK = 32
index.add(self.xb)
Dnsg, Insg = index.search(self.xq, 1)
recalls = (Iref == Insg).sum()
print('metric: {}, nb equal: {}'.format(metrics[metric], recalls))
self.assertGreaterEqual(recalls, 475)
self.subtest_connectivity(index, self.xb.shape[0])
index.reset()
index.add(self.xb)
Dnsg, Insg = index.search(self.xq, 1)
recalls = (Iref == Insg).sum()
print('metric: {}, nb equal: {}'.format(metrics[metric], recalls))
self.assertGreaterEqual(recalls, 475)
self.subtest_connectivity(index, self.xb.shape[0])
def test_order(self):
"""make sure that output results are sorted"""
d = self.xq.shape[1]
index = faiss.IndexNSGFlat(d, 32)
index.train(self.xb)
index.add(self.xb)
k = 10
nq = self.xq.shape[0]
D, _ = index.search(self.xq, k)
indices = np.argsort(D, axis=1)
gt = np.arange(0, k)[np.newaxis, :] # [1, k]
gt = np.repeat(gt, nq, axis=0) # [nq, k]
np.testing.assert_array_equal(indices, gt)
def test_nsg_pq(self):
"""Test IndexNSGPQ"""
d = self.xq.shape[1]
R, pq_M = 32, 4
index = faiss.index_factory(d, f"NSG{R}_PQ{pq_M}")
assert isinstance(index, faiss.IndexNSGPQ)
idxpq = faiss.downcast_index(index.storage)
assert index.nsg.R == R and idxpq.pq.M == pq_M
flat_index = faiss.IndexFlat(d)
flat_index.add(self.xb)
Dref, Iref = flat_index.search(self.xq, k=1)
index.GK = 32
index.train(self.xb)
index.add(self.xb)
D, I = index.search(self.xq, k=1)
# test accuracy
recalls = (Iref == I).sum()
print("IndexNSGPQ", recalls)
self.assertGreaterEqual(recalls, 190) # 193
# test I/O
self.subtest_io_and_clone(index, D, I)
def test_nsg_sq(self):
"""Test IndexNSGSQ"""
d = self.xq.shape[1]
R = 32
index = faiss.index_factory(d, f"NSG{R}_SQ8")
assert isinstance(index, faiss.IndexNSGSQ)
idxsq = faiss.downcast_index(index.storage)
assert index.nsg.R == R
assert idxsq.sq.qtype == faiss.ScalarQuantizer.QT_8bit
flat_index = faiss.IndexFlat(d)
flat_index.add(self.xb)
Dref, Iref = flat_index.search(self.xq, k=1)
index.train(self.xb)
index.add(self.xb)
D, I = index.search(self.xq, k=1)
# test accuracy
recalls = (Iref == I).sum()
print("IndexNSGSQ", recalls)
self.assertGreaterEqual(recalls, 405) # 411
# test I/O
self.subtest_io_and_clone(index, D, I)
class TestDistancesPositive(unittest.TestCase):
def test_l2_pos(self):
"""
roundoff errors occur only with the L2 decomposition used
with BLAS, ie. in IndexFlatL2 and with
n > distance_compute_blas_threshold = 20
"""
d = 128
n = 100
rs = np.random.RandomState(1234)
x = rs.rand(n, d).astype('float32')
index = faiss.IndexFlatL2(d)
index.add(x)
D, I = index.search(x, 10)
assert np.all(D >= 0)
class TestShardReplicas(unittest.TestCase):
def test_shard_flag_propagation(self):
d = 64 # dimension
nb = 1000
rs = np.random.RandomState(1234)
xb = rs.rand(nb, d).astype('float32')
nlist = 10
quantizer1 = faiss.IndexFlatL2(d)
quantizer2 = faiss.IndexFlatL2(d)
index1 = faiss.IndexIVFFlat(quantizer1, d, nlist)
index2 = faiss.IndexIVFFlat(quantizer2, d, nlist)
index = faiss.IndexShards(d, True)
index.add_shard(index1)
index.add_shard(index2)
self.assertFalse(index.is_trained)
index.train(xb)
self.assertTrue(index.is_trained)
self.assertEqual(index.ntotal, 0)
index.add(xb)
self.assertEqual(index.ntotal, nb)
index.remove_shard(index2)
self.assertEqual(index.ntotal, nb / 2)
index.remove_shard(index1)
self.assertEqual(index.ntotal, 0)
def test_replica_flag_propagation(self):
d = 64 # dimension
nb = 1000
rs = np.random.RandomState(1234)
xb = rs.rand(nb, d).astype('float32')
nlist = 10
quantizer1 = faiss.IndexFlatL2(d)
quantizer2 = faiss.IndexFlatL2(d)
index1 = faiss.IndexIVFFlat(quantizer1, d, nlist)
index2 = faiss.IndexIVFFlat(quantizer2, d, nlist)
index = faiss.IndexReplicas(d, True)
index.add_replica(index1)
index.add_replica(index2)
self.assertFalse(index.is_trained)
index.train(xb)
self.assertTrue(index.is_trained)
self.assertEqual(index.ntotal, 0)
index.add(xb)
self.assertEqual(index.ntotal, nb)
index.remove_replica(index2)
self.assertEqual(index.ntotal, nb)
index.remove_replica(index1)
self.assertEqual(index.ntotal, 0)
class TestReconsException(unittest.TestCase):
def test_recons_exception(self):
d = 64 # dimension
nb = 1000
rs = np.random.RandomState(1234)
xb = rs.rand(nb, d).astype('float32')
nlist = 10
quantizer = faiss.IndexFlatL2(d) # the other index
index = faiss.IndexIVFFlat(quantizer, d, nlist)
index.train(xb)
index.add(xb)
index.make_direct_map()
index.reconstruct(9)
self.assertRaises(
RuntimeError,
index.reconstruct, 100001
)
def test_reconstuct_after_add(self):
index = faiss.index_factory(10, 'IVF5,SQfp16')
index.train(faiss.randn((100, 10), 123))
index.add(faiss.randn((100, 10), 345))
index.make_direct_map()
index.add(faiss.randn((100, 10), 678))
# should not raise an exception
index.reconstruct(5)
print(index.ntotal)
index.reconstruct(150)
class TestReconsHash(unittest.TestCase):
def do_test(self, index_key):
d = 32
index = faiss.index_factory(d, index_key)
index.train(faiss.randn((100, d), 123))
# reference reconstruction
index.add(faiss.randn((100, d), 345))
index.add(faiss.randn((100, d), 678))
ref_recons = index.reconstruct_n(0, 200)
# with lookup
index.reset()
rs = np.random.RandomState(123)
ids = rs.choice(10000, size=200, replace=False).astype(np.int64)
index.add_with_ids(faiss.randn((100, d), 345), ids[:100])
index.set_direct_map_type(faiss.DirectMap.Hashtable)
index.add_with_ids(faiss.randn((100, d), 678), ids[100:])
# compare
for i in range(0, 200, 13):
recons = index.reconstruct(int(ids[i]))
self.assertTrue(np.all(recons == ref_recons[i]))
# test I/O
buf = faiss.serialize_index(index)
index2 = faiss.deserialize_index(buf)
# compare
for i in range(0, 200, 13):
recons = index2.reconstruct(int(ids[i]))
self.assertTrue(np.all(recons == ref_recons[i]))
# remove
toremove = np.ascontiguousarray(ids[0:200:3])
sel = faiss.IDSelectorArray(50, faiss.swig_ptr(toremove[:50]))
# test both ways of removing elements
nremove = index2.remove_ids(sel)
nremove += index2.remove_ids(toremove[50:])
self.assertEqual(nremove, len(toremove))
for i in range(0, 200, 13):
if i % 3 == 0:
self.assertRaises(
RuntimeError,
index2.reconstruct, int(ids[i])
)
else:
recons = index2.reconstruct(int(ids[i]))
self.assertTrue(np.all(recons == ref_recons[i]))
# index error should raise
self.assertRaises(
RuntimeError,
index.reconstruct, 20000
)
def test_IVFFlat(self):
self.do_test("IVF5,Flat")
def test_IVFSQ(self):
self.do_test("IVF5,SQfp16")
def test_IVFPQ(self):
self.do_test("IVF5,PQ4x4np")
if __name__ == '__main__':
unittest.main()
class TestValidIndexParams(unittest.TestCase):
def test_IndexIVFPQ(self):
d = 32
nb = 1000
nt = 1500
nq = 200
(xt, xb, xq) = get_dataset_2(d, nt, nb, nq)
coarse_quantizer = faiss.IndexFlatL2(d)
index = faiss.IndexIVFPQ(coarse_quantizer, d, 32, 8, 8)
index.cp.min_points_per_centroid = 5 # quiet warning
index.train(xt)
index.add(xb)
# invalid nprobe
index.nprobe = 0
k = 10
self.assertRaises(RuntimeError, index.search, xq, k)
# invalid k
index.nprobe = 4
k = -10
self.assertRaises(AssertionError, index.search, xq, k)
# valid params
index.nprobe = 4
k = 10
D, nns = index.search(xq, k)
self.assertEqual(D.shape[0], nq)
self.assertEqual(D.shape[1], k)
def test_IndexFlat(self):
d = 32
nb = 1000
nt = 0
nq = 200
(xt, xb, xq) = get_dataset_2(d, nt, nb, nq)
index = faiss.IndexFlat(d, faiss.METRIC_L2)
index.add(xb)
# invalid k
k = -5
self.assertRaises(AssertionError, index.search, xq, k)
# valid k
k = 5
D, I = index.search(xq, k)
self.assertEqual(D.shape[0], nq)
self.assertEqual(D.shape[1], k)
class TestLargeRangeSearch(unittest.TestCase):
def test_range_search(self):
# test for https://github.com/facebookresearch/faiss/issues/1889
d = 256
nq = 16
nb = 1000000
# faiss.cvar.distance_compute_blas_threshold = 10
faiss.omp_set_num_threads(1)
index = faiss.IndexFlatL2(d)
xb = np.zeros((nb, d), dtype="float32")
index.add(xb)
xq = np.zeros((nq, d), dtype="float32")
lims, D, I = index.range_search(xq, 1.0)
assert len(D) == len(xb) * len(xq)