156 lines
4.8 KiB
C++
156 lines
4.8 KiB
C++
/*
|
|
* Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
*
|
|
* This source code is licensed under the MIT license found in the
|
|
* LICENSE file in the root directory of this source tree.
|
|
*/
|
|
|
|
#include <cmath>
|
|
#include <cstdio>
|
|
#include <cstdlib>
|
|
#include <random>
|
|
|
|
#include <sys/time.h>
|
|
|
|
#include <faiss/IndexFlat.h>
|
|
#include <faiss/IndexIVFFlat.h>
|
|
#include <faiss/IndexPQ.h>
|
|
|
|
double elapsed() {
|
|
struct timeval tv;
|
|
gettimeofday(&tv, nullptr);
|
|
return tv.tv_sec + tv.tv_usec * 1e-6;
|
|
}
|
|
|
|
int main() {
|
|
double t0 = elapsed();
|
|
|
|
// dimension of the vectors to index
|
|
int d = 128;
|
|
|
|
// size of the database we plan to index
|
|
size_t nb = 1000 * 1000;
|
|
|
|
// make a set of nt training vectors in the unit cube
|
|
// (could be the database)
|
|
size_t nt = 100 * 1000;
|
|
|
|
//---------------------------------------------------------------
|
|
// Define the core quantizer
|
|
// We choose a multiple inverted index for faster training with less data
|
|
// and because it usually offers best accuracy/speed trade-offs
|
|
//
|
|
// We here assume that its lifespan of this coarse quantizer will cover the
|
|
// lifespan of the inverted-file quantizer IndexIVFFlat below
|
|
// With dynamic allocation, one may give the responsibility to free the
|
|
// quantizer to the inverted-file index (with attribute do_delete_quantizer)
|
|
//
|
|
// Note: a regular clustering algorithm would be defined as:
|
|
// faiss::IndexFlatL2 coarse_quantizer (d);
|
|
//
|
|
// Use nhash=2 subquantizers used to define the product coarse quantizer
|
|
// Number of bits: we will have 2^nbits_coarse centroids per subquantizer
|
|
// meaning (2^12)^nhash distinct inverted lists
|
|
size_t nhash = 2;
|
|
size_t nbits_subq = int(log2(nb + 1) / 2); // good choice in general
|
|
size_t ncentroids = 1 << (nhash * nbits_subq); // total # of centroids
|
|
|
|
faiss::MultiIndexQuantizer coarse_quantizer(d, nhash, nbits_subq);
|
|
|
|
printf("IMI (%ld,%ld): %ld virtual centroids (target: %ld base vectors)",
|
|
nhash,
|
|
nbits_subq,
|
|
ncentroids,
|
|
nb);
|
|
|
|
// the coarse quantizer should not be dealloced before the index
|
|
// 4 = nb of bytes per code (d must be a multiple of this)
|
|
// 8 = nb of bits per sub-code (almost always 8)
|
|
faiss::MetricType metric = faiss::METRIC_L2; // can be METRIC_INNER_PRODUCT
|
|
faiss::IndexIVFFlat index(&coarse_quantizer, d, ncentroids, metric);
|
|
index.quantizer_trains_alone = true;
|
|
|
|
// define the number of probes. 2048 is for high-dim, overkilled in practice
|
|
// Use 4-1024 depending on the trade-off speed accuracy that you want
|
|
index.nprobe = 2048;
|
|
|
|
std::mt19937 rng;
|
|
std::uniform_real_distribution<> distrib;
|
|
|
|
{ // training
|
|
printf("[%.3f s] Generating %ld vectors in %dD for training\n",
|
|
elapsed() - t0,
|
|
nt,
|
|
d);
|
|
|
|
std::vector<float> trainvecs(nt * d);
|
|
for (size_t i = 0; i < nt * d; i++) {
|
|
trainvecs[i] = distrib(rng);
|
|
}
|
|
|
|
printf("[%.3f s] Training the index\n", elapsed() - t0);
|
|
index.verbose = true;
|
|
index.train(nt, trainvecs.data());
|
|
}
|
|
|
|
size_t nq;
|
|
std::vector<float> queries;
|
|
|
|
{ // populating the database
|
|
printf("[%.3f s] Building a dataset of %ld vectors to index\n",
|
|
elapsed() - t0,
|
|
nb);
|
|
|
|
std::vector<float> database(nb * d);
|
|
for (size_t i = 0; i < nb * d; i++) {
|
|
database[i] = distrib(rng);
|
|
}
|
|
|
|
printf("[%.3f s] Adding the vectors to the index\n", elapsed() - t0);
|
|
|
|
index.add(nb, database.data());
|
|
|
|
// remember a few elements from the database as queries
|
|
int i0 = 1234;
|
|
int i1 = 1244;
|
|
|
|
nq = i1 - i0;
|
|
queries.resize(nq * d);
|
|
for (int i = i0; i < i1; i++) {
|
|
for (int j = 0; j < d; j++) {
|
|
queries[(i - i0) * d + j] = database[i * d + j];
|
|
}
|
|
}
|
|
}
|
|
|
|
{ // searching the database
|
|
int k = 5;
|
|
printf("[%.3f s] Searching the %d nearest neighbors "
|
|
"of %ld vectors in the index\n",
|
|
elapsed() - t0,
|
|
k,
|
|
nq);
|
|
|
|
std::vector<faiss::idx_t> nns(k * nq);
|
|
std::vector<float> dis(k * nq);
|
|
|
|
index.search(nq, queries.data(), k, dis.data(), nns.data());
|
|
|
|
printf("[%.3f s] Query results (vector ids, then distances):\n",
|
|
elapsed() - t0);
|
|
|
|
for (int i = 0; i < nq; i++) {
|
|
printf("query %2d: ", i);
|
|
for (int j = 0; j < k; j++) {
|
|
printf("%7ld ", nns[j + i * k]);
|
|
}
|
|
printf("\n dis: ");
|
|
for (int j = 0; j < k; j++) {
|
|
printf("%7g ", dis[j + i * k]);
|
|
}
|
|
printf("\n");
|
|
}
|
|
}
|
|
return 0;
|
|
}
|