faiss/tests/test_product_quantizer.py
Matthijs Douze fa85ddf8fa reduce nb of pq training iterations in test
Summary:
The tests TestPQTables are very slow in dev mode with BLAS. This seems to be due to the training operation of the PQ. However, since it does not matter if the training is accurate or not, we can just reduce the nb of training iterations from the default 25 to 4.

Still unclear why this happens, because the runtime is spent in BLAS, which should be independend of mode/opt or mode/dev.

Reviewed By: wickedfoo

Differential Revision: D24783752

fbshipit-source-id: 38077709eb9a6432210c11c3040765e139353ae8
2020-11-08 22:26:08 -08:00

148 lines
4.2 KiB
Python

# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from __future__ import absolute_import, division, print_function
import numpy as np
import faiss
import unittest
class TestProductQuantizer(unittest.TestCase):
def test_pq(self):
d = 64
n = 2000
cs = 4
np.random.seed(123)
x = np.random.random(size=(n, d)).astype('float32')
pq = faiss.ProductQuantizer(d, cs, 8)
pq.train(x)
codes = pq.compute_codes(x)
x2 = pq.decode(codes)
diff = ((x - x2)**2).sum()
# print("diff=", diff)
# diff= 4418.0562
self.assertGreater(5000, diff)
pq10 = faiss.ProductQuantizer(d, cs, 10)
assert pq10.code_size == 5
pq10.verbose = True
pq10.cp.verbose = True
pq10.train(x)
codes = pq10.compute_codes(x)
x10 = pq10.decode(codes)
diff10 = ((x - x10)**2).sum()
self.assertGreater(diff, diff10)
def do_test_codec(self, nbit):
pq = faiss.ProductQuantizer(16, 2, nbit)
# simulate training
rs = np.random.RandomState(123)
centroids = rs.rand(2, 1 << nbit, 8).astype('float32')
faiss.copy_array_to_vector(centroids.ravel(), pq.centroids)
idx = rs.randint(1 << nbit, size=(100, 2))
# can be encoded exactly
x = np.hstack((
centroids[0, idx[:, 0]],
centroids[1, idx[:, 1]]
))
# encode / decode
codes = pq.compute_codes(x)
xr = pq.decode(codes)
assert np.all(xr == x)
# encode w/ external index
assign_index = faiss.IndexFlatL2(8)
pq.assign_index = assign_index
codes2 = np.empty((100, pq.code_size), dtype='uint8')
pq.compute_codes_with_assign_index(
faiss.swig_ptr(x), faiss.swig_ptr(codes2), 100)
assert np.all(codes == codes2)
def test_codec(self):
for i in range(16):
print("Testing nbits=%d" % (i + 1))
self.do_test_codec(i + 1)
class TestPQTables(unittest.TestCase):
def do_test(self, d, dsub, nbit=8, metric=None):
if metric is None:
self.do_test(d, dsub, nbit, faiss.METRIC_INNER_PRODUCT)
self.do_test(d, dsub, nbit, faiss.METRIC_L2)
return
# faiss.cvar.distance_compute_blas_threshold = 1000000
M = d // dsub
pq = faiss.ProductQuantizer(d, M, nbit)
xt = faiss.randn((max(1000, pq.ksub * 50), d), 123)
pq.cp.niter = 4 # to avoid timeouts in tests
pq.train(xt)
centroids = faiss.vector_to_array(pq.centroids)
centroids = centroids.reshape(pq.M, pq.ksub, pq.dsub)
nx = 100
x = faiss.randn((nx, d), 555)
ref_tab = np.zeros((nx, M, pq.ksub), "float32")
# computation of tables in numpy
for sq in range(M):
i0, i1 = sq * dsub, (sq + 1) * dsub
xsub = x[:, i0:i1]
centsq = centroids[sq, :, :]
if metric == faiss.METRIC_INNER_PRODUCT:
ref_tab[:, sq, :] = xsub @ centsq.T
elif metric == faiss.METRIC_L2:
xsub3 = xsub.reshape(nx, 1, dsub)
cent3 = centsq.reshape(1, pq.ksub, dsub)
ref_tab[:, sq, :] = ((xsub3 - cent3) ** 2).sum(2)
else:
assert False
sp = faiss.swig_ptr
new_tab = np.zeros((nx, M, pq.ksub), "float32")
if metric == faiss.METRIC_INNER_PRODUCT:
pq.compute_inner_prod_tables(nx, sp(x), sp(new_tab))
elif metric == faiss.METRIC_L2:
pq.compute_distance_tables(nx, sp(x), sp(new_tab))
else:
assert False
np.testing.assert_array_almost_equal(ref_tab, new_tab, decimal=5)
def test_dsub2(self):
self.do_test(16, 2)
def test_dsub5(self):
self.do_test(20, 5)
def test_dsub2_odd(self):
self.do_test(18, 2)
def test_dsub4(self):
self.do_test(32, 4)
def test_dsub4_odd(self):
self.do_test(36, 4)
# too slow
#def test_12bit(self):
# self.do_test(32, 4, nbit=12)
def test_4bit(self):
self.do_test(32, 4, nbit=4)