Matthijs Douze 8b05434a50 Remove useless function
Summary:
Removed an unused function that caused compile errors in some configurations.
Added contrib function (exhaustive_search.knn) to compute the k nearest neighbors without constructing an index.
Renamed the equivalent GPU function as exhaustive_search.knn_gpu (it does not make much sense to mention numpy in the name as all functions take numpy arguments by default).

Reviewed By: beauby

Differential Revision: D24215427

fbshipit-source-id: 6d8e1eafa7c57593304b7b76f83b3015e4d2a2bb
2020-10-09 07:57:04 -07:00
..
2020-08-27 19:19:33 -07:00
2020-10-09 07:57:04 -07:00
2020-08-03 22:15:02 +02:00
2020-08-03 22:15:02 +02:00
2020-08-27 19:19:33 -07:00

The contrib modules

The contrib directory contains helper modules for Faiss for various tasks.

Code structure

The contrib directory gets compiled in the module faiss.contrib. Note that although some of the modules may depend on additional modules (eg. GPU Faiss, pytorch, hdf5), they are not necessarily compiled in to avoid adding dependencies. It is the user's responsibility to provide them.

In contrib, we are progressively dropping python2 support.

List of contrib modules

rpc.py

A very simple Remote Procedure Call library, where function parameters and results are pickled, for use with client_server.py

client_server.py

The server handles requests to a Faiss index. The client calls the remote index. This is mainly to shard datasets over several machines, see Distributd index

ondisk.py

Encloses the main logic to merge indexes into an on-disk index. See On-disk storage

exhaustive_search.py

Computes the ground-truth search results for a dataset that possibly does not fit in RAM. Uses GPU if available. Tested in tests/test_contrib.TestComputeGT

gpu.py

(requires GPU Faiss)

Interoperability functions for pytorch and Faiss: pass GPU data without copying back to CPU. Tested in gpu/test/test_pytorch_faiss

datasets.py

(may require h5py)

Defintion of how to access data for some standard datsets.