faiss/faiss/gpu/impl/IVFPQ.cuh

164 lines
6.0 KiB
Plaintext

/**
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
#pragma once
#include <faiss/Index.h>
#include <faiss/MetricType.h>
#include <faiss/gpu/impl/IVFBase.cuh>
#include <faiss/gpu/utils/Float16.cuh>
namespace faiss { namespace gpu {
/// Implementing class for IVFPQ on the GPU
class IVFPQ : public IVFBase {
public:
IVFPQ(GpuResources* resources,
faiss::MetricType metric,
float metricArg,
/// We do not own this reference
FlatIndex* quantizer,
int numSubQuantizers,
int bitsPerSubQuantizer,
bool useFloat16LookupTables,
bool useMMCodeDistance,
bool interleavedLayout,
float* pqCentroidData,
IndicesOptions indicesOptions,
MemorySpace space);
/// Returns true if we support PQ in this size
static bool isSupportedPQCodeLength(int size);
~IVFPQ() override;
/// Enable or disable pre-computed codes
void setPrecomputedCodes(bool enable);
/// Find the approximate k nearest neigbors for `queries` against
/// our database
void query(Tensor<float, 2, true>& queries,
int nprobe,
int k,
Tensor<float, 2, true>& outDistances,
Tensor<Index::idx_t, 2, true>& outIndices);
/// Returns our set of sub-quantizers of the form
/// (sub q)(code id)(sub dim)
Tensor<float, 3, true> getPQCentroids();
protected:
/// Returns the encoding size for a PQ-encoded IVF list
size_t getGpuVectorsEncodingSize_(int numVecs) const override;
size_t getCpuVectorsEncodingSize_(int numVecs) const override;
/// Translate to our preferred GPU encoding
std::vector<uint8_t> translateCodesToGpu_(std::vector<uint8_t> codes,
size_t numVecs) const override;
/// Translate from our preferred GPU encoding
std::vector<uint8_t> translateCodesFromGpu_(std::vector<uint8_t> codes,
size_t numVecs) const override;
/// Encode the vectors that we're adding and append to our IVF lists
void appendVectors_(Tensor<float, 2, true>& vecs,
Tensor<Index::idx_t, 1, true>& indices,
Tensor<int, 1, true>& uniqueLists,
Tensor<int, 1, true>& vectorsByUniqueList,
Tensor<int, 1, true>& uniqueListVectorStart,
Tensor<int, 1, true>& uniqueListStartOffset,
Tensor<int, 1, true>& listIds,
Tensor<int, 1, true>& listOffset,
cudaStream_t stream) override;
/// Sets the current product quantizer centroids; the data can be
/// resident on either the host or the device. It will be transposed
/// into our preferred data layout
/// Data must be a row-major, 3-d array of size
/// (numSubQuantizers, numSubQuantizerCodes, dim / numSubQuantizers)
void setPQCentroids_(float* data);
/// Calculate precomputed residual distance information
void precomputeCodes_();
/// Calculate precomputed residual distance information (for different coarse
/// centroid type)
template <typename CentroidT>
void precomputeCodesT_();
/// Runs kernels for scanning inverted lists with precomputed codes
void runPQPrecomputedCodes_(Tensor<float, 2, true>& queries,
DeviceTensor<float, 2, true>& coarseDistances,
DeviceTensor<int, 2, true>& coarseIndices,
int k,
Tensor<float, 2, true>& outDistances,
Tensor<Index::idx_t, 2, true>& outIndices);
/// Runs kernels for scanning inverted lists without precomputed codes
void runPQNoPrecomputedCodes_(Tensor<float, 2, true>& queries,
DeviceTensor<float, 2, true>& coarseDistances,
DeviceTensor<int, 2, true>& coarseIndices,
int k,
Tensor<float, 2, true>& outDistances,
Tensor<Index::idx_t, 2, true>& outIndices);
/// Runs kernels for scanning inverted lists without precomputed codes (for
/// different coarse centroid type)
template <typename CentroidT>
void runPQNoPrecomputedCodesT_(Tensor<float, 2, true>& queries,
DeviceTensor<float, 2, true>& coarseDistances,
DeviceTensor<int, 2, true>& coarseIndices,
int k,
Tensor<float, 2, true>& outDistances,
Tensor<Index::idx_t, 2, true>& outIndices);
private:
/// Number of sub-quantizers per vector
const int numSubQuantizers_;
/// Number of bits per sub-quantizer
const int bitsPerSubQuantizer_;
/// Number of per sub-quantizer codes (2^bits)
const int numSubQuantizerCodes_;
/// Number of dimensions per each sub-quantizer
const int dimPerSubQuantizer_;
/// Do we maintain precomputed terms and lookup tables in float16
/// form?
const bool useFloat16LookupTables_;
/// For usage without precomputed codes, do we force usage of the
/// general-purpose MM code distance computation? This is for testing
/// purposes.
const bool useMMCodeDistance_;
/// On the GPU, we prefer different PQ centroid data layouts for
/// different purposes.
///
/// (sub q)(sub dim)(code id)
DeviceTensor<float, 3, true> pqCentroidsInnermostCode_;
/// (sub q)(code id)(sub dim)
DeviceTensor<float, 3, true> pqCentroidsMiddleCode_;
/// Are precomputed codes enabled? (additional factoring and
/// precomputation of the residual distance, to reduce query-time work)
bool precomputedCodes_;
/// Precomputed term 2 in float form
/// (centroid id)(sub q)(code id)
DeviceTensor<float, 3, true> precomputedCode_;
/// Precomputed term 2 in half form
DeviceTensor<half, 3, true> precomputedCodeHalf_;
};
} } // namespace