117 lines
3.1 KiB
Plaintext
117 lines
3.1 KiB
Plaintext
|
|
/**
|
|
* Copyright (c) 2015-present, Facebook, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This source code is licensed under the CC-by-NC license found in the
|
|
* LICENSE file in the root directory of this source tree.
|
|
*/
|
|
|
|
// Copyright 2004-present Facebook. All Rights Reserved.
|
|
|
|
#include "GpuIndex.h"
|
|
#include "../FaissAssert.h"
|
|
#include "GpuResources.h"
|
|
#include "utils/DeviceUtils.h"
|
|
|
|
namespace faiss { namespace gpu {
|
|
|
|
/// Default size for which we page add or search
|
|
constexpr size_t kAddPageSize = (size_t) 256 * 1024 * 1024;
|
|
constexpr size_t kSearchPageSize = (size_t) 256 * 1024 * 1024;
|
|
|
|
GpuIndex::GpuIndex(GpuResources* resources,
|
|
int device,
|
|
int dims,
|
|
faiss::MetricType metric) :
|
|
Index(dims, metric),
|
|
resources_(resources),
|
|
device_(device) {
|
|
FAISS_ASSERT(device_ < getNumDevices());
|
|
|
|
FAISS_ASSERT(resources_);
|
|
resources_->initializeForDevice(device_);
|
|
}
|
|
|
|
void
|
|
GpuIndex::add(Index::idx_t n, const float* x) {
|
|
addInternal_(n, x, nullptr);
|
|
}
|
|
|
|
void
|
|
GpuIndex::add_with_ids(Index::idx_t n,
|
|
const float* x,
|
|
const Index::idx_t* ids) {
|
|
addInternal_(n, x, ids);
|
|
}
|
|
|
|
void
|
|
GpuIndex::addInternal_(Index::idx_t n,
|
|
const float* x,
|
|
const Index::idx_t* ids) {
|
|
DeviceScope scope(device_);
|
|
FAISS_ASSERT(this->is_trained);
|
|
|
|
if (n > 0) {
|
|
size_t totalSize = n * (size_t) this->d * sizeof(float);
|
|
|
|
if (totalSize > kAddPageSize) {
|
|
// How many vectors fit into kAddPageSize?
|
|
size_t numVecsPerPage =
|
|
kAddPageSize / ((size_t) this->d * sizeof(float));
|
|
|
|
// Always add at least 1 vector, if we have huge vectors
|
|
numVecsPerPage = std::max(numVecsPerPage, (size_t) 1);
|
|
|
|
for (size_t i = 0; i < n; i += numVecsPerPage) {
|
|
size_t curNum = std::min(numVecsPerPage, n - i);
|
|
|
|
addImpl_(curNum,
|
|
x + i * (size_t) this->d,
|
|
ids ? ids + i : nullptr);
|
|
}
|
|
} else {
|
|
addImpl_(n, x, ids);
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
GpuIndex::search(Index::idx_t n,
|
|
const float* x,
|
|
Index::idx_t k,
|
|
float* distances,
|
|
Index::idx_t* labels) const {
|
|
DeviceScope scope(device_);
|
|
FAISS_ASSERT(this->is_trained);
|
|
|
|
if (n > 0) {
|
|
size_t totalSize = n * (size_t) this->d * sizeof(float);
|
|
|
|
if (totalSize > kSearchPageSize) {
|
|
// How many vectors fit into kSearchPageSize?
|
|
// Just consider `x`, not the size of `distances` or `labels`
|
|
// since they should be small, relatively speaking
|
|
size_t numVecsPerPage =
|
|
kSearchPageSize / ((size_t) this->d * sizeof(float));
|
|
|
|
// Always search at least 1 vector, if we have huge vectors
|
|
numVecsPerPage = std::max(numVecsPerPage, (size_t) 1);
|
|
|
|
for (size_t i = 0; i < n; i += numVecsPerPage) {
|
|
size_t curNum = std::min(numVecsPerPage, n - i);
|
|
|
|
searchImpl_(curNum,
|
|
x + i * (size_t) this->d,
|
|
k,
|
|
distances + i * k,
|
|
labels + i * k);
|
|
}
|
|
} else {
|
|
searchImpl_(n, x, k, distances, labels);
|
|
}
|
|
}
|
|
}
|
|
|
|
} } // namespace
|