mirror of
https://github.com/facebookresearch/faiss.git
synced 2025-06-03 21:54:02 +08:00
various bugfixes from github issues kmean with some frozen centroids GPU better tiling for large flat datasets default AVX for vector ops
93 lines
2.5 KiB
Python
93 lines
2.5 KiB
Python
# Copyright (c) 2015-present, Facebook, Inc.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the BSD+Patents license found in the
|
|
# LICENSE file in the root directory of this source tree.
|
|
|
|
#! /usr/bin/env python2
|
|
|
|
import numpy as np
|
|
import unittest
|
|
import faiss
|
|
import torch
|
|
|
|
|
|
def search_index_pytorch(index, x, k, D=None, I=None):
|
|
"""call the search function of an index with pytorch tensor I/O (CPU
|
|
and GPU supported)"""
|
|
assert x.is_contiguous()
|
|
n, d = x.size()
|
|
assert d == index.d
|
|
|
|
if D is None:
|
|
if x.is_cuda:
|
|
D = torch.cuda.FloatTensor(n, k)
|
|
else:
|
|
D = torch.FloatTensor(n, k)
|
|
else:
|
|
assert D.__class__ in (torch.FloatTensor, torch.cuda.FloatTensor)
|
|
assert D.size() == (n, k)
|
|
assert D.is_contiguous()
|
|
|
|
if I is None:
|
|
if x.is_cuda:
|
|
I = torch.cuda.LongTensor(n, k)
|
|
else:
|
|
I = torch.LongTensor(n, k)
|
|
else:
|
|
assert I.__class__ in (torch.LongTensor, torch.cuda.LongTensor)
|
|
assert I.size() == (n, k)
|
|
assert I.is_contiguous()
|
|
torch.cuda.synchronize()
|
|
xptr = x.storage().data_ptr()
|
|
Iptr = I.storage().data_ptr()
|
|
Dptr = D.storage().data_ptr()
|
|
index.search_c(n, faiss.cast_integer_to_float_ptr(xptr),
|
|
k, faiss.cast_integer_to_float_ptr(Dptr),
|
|
faiss.cast_integer_to_long_ptr(Iptr))
|
|
torch.cuda.synchronize()
|
|
return D, I
|
|
|
|
|
|
class PytorchFaissInterop(unittest.TestCase):
|
|
|
|
def test_interop(self):
|
|
|
|
d = 16
|
|
nq = 5
|
|
nb = 20
|
|
|
|
xq = faiss.randn(nq * d, 1234).reshape(nq, d)
|
|
xb = faiss.randn(nb * d, 1235).reshape(nb, d)
|
|
|
|
res = faiss.StandardGpuResources()
|
|
index = faiss.GpuIndexFlatIP(res, d)
|
|
index.add(xb)
|
|
|
|
# reference CPU result
|
|
Dref, Iref = index.search(xq, 5)
|
|
|
|
# query is pytorch tensor (CPU)
|
|
xq_torch = torch.FloatTensor(xq)
|
|
|
|
D2, I2 = search_index_pytorch(index, xq_torch, 5)
|
|
|
|
assert np.all(Iref == I2.numpy())
|
|
|
|
# query is pytorch tensor (GPU)
|
|
xq_torch = xq_torch.cuda()
|
|
# no need for a sync here
|
|
|
|
D3, I3 = search_index_pytorch(index, xq_torch, 5)
|
|
|
|
# D3 and I3 are on torch tensors on GPU as well.
|
|
# this does a sync, which is useful because faiss and
|
|
# pytorch use different Cuda streams.
|
|
res.syncDefaultStreamCurrentDevice()
|
|
|
|
assert np.all(Iref == I3.cpu().numpy())
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|