faiss/tests/test_cppcontrib_sa_decode.cpp

1256 lines
40 KiB
C++

// (c) Meta Platforms, Inc. and affiliates. Confidential and proprietary.
#include <gtest/gtest.h>
#include <memory>
#include <random>
#include <tuple>
#include <vector>
#include <faiss/Index.h>
#include <faiss/Index2Layer.h>
#include <faiss/IndexIVFPQ.h>
#include <faiss/IndexPQ.h>
#include <faiss/impl/io.h>
#include <faiss/index_factory.h>
#include <faiss/index_io.h>
#include <faiss/IndexRowwiseMinMax.h>
#include <faiss/cppcontrib/SaDecodeKernels.h>
using namespace ::testing;
using ::testing::TestWithParam;
using ::testing::Values;
std::tuple<std::shared_ptr<faiss::Index>, std::vector<uint8_t>> trainDataset(
const std::vector<float>& input,
const uint64_t n,
const uint64_t d,
const std::string& description) {
// train an index
auto index = std::shared_ptr<faiss::Index>(
faiss::index_factory((int)d, description.c_str()));
index->train((int)n, input.data());
// encode
const size_t codeSize = index->sa_code_size();
std::vector<uint8_t> encodedData(n * codeSize);
index->sa_encode(n, input.data(), encodedData.data());
return std::make_tuple(std::move(index), std::move(encodedData));
}
bool testIfIVFPQ(
const faiss::Index* const index,
const float** pqCoarseCentroidsQ,
const float** pqFineCentroidsQ) {
if (pqFineCentroidsQ == nullptr || pqCoarseCentroidsQ == nullptr) {
return false;
}
const faiss::IndexIVFPQ* const indexQ =
dynamic_cast<const faiss::IndexIVFPQ*>(index);
if (indexQ == nullptr) {
return false;
}
const auto coarseIndexQ =
dynamic_cast<const faiss::IndexFlatCodes*>(indexQ->quantizer);
if (coarseIndexQ == nullptr) {
return false;
}
*pqFineCentroidsQ = indexQ->pq.centroids.data();
*pqCoarseCentroidsQ =
reinterpret_cast<const float*>(coarseIndexQ->codes.data());
return true;
}
bool testIfResidualPQ(
const faiss::Index* const index,
const float** pqCoarseCentroidsQ,
const float** pqFineCentroidsQ) {
if (pqFineCentroidsQ == nullptr || pqCoarseCentroidsQ == nullptr) {
return false;
}
const faiss::Index2Layer* const indexQ =
dynamic_cast<const faiss::Index2Layer*>(index);
if (indexQ == nullptr) {
return false;
}
const auto coarseIndexQ = dynamic_cast<const faiss::MultiIndexQuantizer*>(
indexQ->q1.quantizer);
if (coarseIndexQ == nullptr) {
return false;
}
*pqFineCentroidsQ = indexQ->pq.centroids.data();
*pqCoarseCentroidsQ = coarseIndexQ->pq.centroids.data();
return true;
}
template <typename T>
void verifyIndex2LevelDecoder(
const uint64_t n,
const uint64_t d,
const std::shared_ptr<faiss::Index>& index,
const std::vector<uint8_t>& encodedData) {
//
const float* pqFineCentroidsQ = nullptr;
const float* pqCoarseCentroidsQ = nullptr;
//
testIfIVFPQ(index.get(), &pqCoarseCentroidsQ, &pqFineCentroidsQ);
testIfResidualPQ(index.get(), &pqCoarseCentroidsQ, &pqFineCentroidsQ);
//
const size_t codeSize = index->sa_code_size();
//
std::default_random_engine rng(123);
std::uniform_real_distribution<float> u(0, 1);
// test general purpose version vs contrib::store
std::vector<float> outputFaiss(d, 0);
std::vector<float> tmpFaiss(d, 0);
std::vector<float> tmpContrib(d, 0);
for (size_t i = 0; i < n; i++) {
// compute using faiss
index->sa_decode(1, encodedData.data() + i * codeSize, tmpFaiss.data());
// compute using contrib
T::store(
pqCoarseCentroidsQ,
pqFineCentroidsQ,
encodedData.data() + i * codeSize,
tmpContrib.data());
// compare
for (size_t j = 0; j < d; j++)
ASSERT_FLOAT_EQ(tmpFaiss[j], tmpContrib[j]);
// save for the further comparison
const float weight = u(rng);
for (size_t j = 0; j < d; j++)
outputFaiss[j] += weight * tmpFaiss[j];
}
// test contrib::accum, 1 sample per iteration
rng.seed(123);
std::vector<float> outputContrib1s(d, 0);
for (size_t i = 0; i < n; i++) {
const float weight0 = u(rng);
T::accum(
pqCoarseCentroidsQ,
pqFineCentroidsQ,
encodedData.data() + (i + 0) * codeSize,
weight0,
outputContrib1s.data());
}
// verify
for (size_t j = 0; j < d; j++) {
ASSERT_FLOAT_EQ(outputFaiss[j], outputContrib1s[j]);
}
// test contrib::accum, 2 samples per iteration.
rng.seed(123);
std::vector<float> outputContrib2s(d, 0);
std::vector<float> outputContrib2sSame(d, 0);
for (size_t i = 0; i < n; i += 2) {
// populate outputContribs with some existing data
for (size_t j = 0; j < d; j++) {
outputContrib1s[j] = (j + 1) * (j + 1);
outputContrib2s[j] = (j + 1) * (j + 1);
outputContrib2sSame[j] = (j + 1) * (j + 1);
}
// do a single step, 2 samples per step
const float weight0 = u(rng);
const float weight1 = u(rng);
T::accum(
pqCoarseCentroidsQ,
pqFineCentroidsQ,
encodedData.data() + (i + 0) * codeSize,
weight0,
pqCoarseCentroidsQ,
pqFineCentroidsQ,
encodedData.data() + (i + 1) * codeSize,
weight1,
outputContrib2s.data());
// do a single step, 2 samples per step
T::accum(
pqCoarseCentroidsQ,
pqFineCentroidsQ,
encodedData.data() + (i + 0) * codeSize,
weight0,
encodedData.data() + (i + 1) * codeSize,
weight1,
outputContrib2sSame.data());
// do two steps, 1 sample per step
T::accum(
pqCoarseCentroidsQ,
pqFineCentroidsQ,
encodedData.data() + (i + 0) * codeSize,
weight0,
outputContrib1s.data());
T::accum(
pqCoarseCentroidsQ,
pqFineCentroidsQ,
encodedData.data() + (i + 1) * codeSize,
weight1,
outputContrib1s.data());
// compare
for (size_t j = 0; j < d; j++) {
ASSERT_FLOAT_EQ(outputContrib1s[j], outputContrib2s[j]);
ASSERT_FLOAT_EQ(outputContrib1s[j], outputContrib2sSame[j]);
}
}
// test contrib::accum, 3 samples per iteration.
rng.seed(123);
std::vector<float> outputContrib3s(d, 0);
std::vector<float> outputContrib3sSame(d, 0);
const size_t n3 = (n / 3) * 3;
for (size_t i = 0; i < n3; i += 3) {
// populate outputContribs with some existing data
for (size_t j = 0; j < d; j++) {
outputContrib1s[j] = (j + 1) * (j + 1);
outputContrib3s[j] = (j + 1) * (j + 1);
outputContrib3sSame[j] = (j + 1) * (j + 1);
}
// do a single step, 3 samples per step
const float weight0 = u(rng);
const float weight1 = u(rng);
const float weight2 = u(rng);
T::accum(
pqCoarseCentroidsQ,
pqFineCentroidsQ,
encodedData.data() + (i + 0) * codeSize,
weight0,
pqCoarseCentroidsQ,
pqFineCentroidsQ,
encodedData.data() + (i + 1) * codeSize,
weight1,
pqCoarseCentroidsQ,
pqFineCentroidsQ,
encodedData.data() + (i + 2) * codeSize,
weight2,
outputContrib3s.data());
// do a single step, 3 samples per step
T::accum(
pqCoarseCentroidsQ,
pqFineCentroidsQ,
encodedData.data() + (i + 0) * codeSize,
weight0,
encodedData.data() + (i + 1) * codeSize,
weight1,
encodedData.data() + (i + 2) * codeSize,
weight2,
outputContrib3sSame.data());
// do three steps, 1 sample per step
T::accum(
pqCoarseCentroidsQ,
pqFineCentroidsQ,
encodedData.data() + (i + 0) * codeSize,
weight0,
outputContrib1s.data());
T::accum(
pqCoarseCentroidsQ,
pqFineCentroidsQ,
encodedData.data() + (i + 1) * codeSize,
weight1,
outputContrib1s.data());
T::accum(
pqCoarseCentroidsQ,
pqFineCentroidsQ,
encodedData.data() + (i + 2) * codeSize,
weight2,
outputContrib1s.data());
// compare
for (size_t j = 0; j < d; j++) {
ASSERT_FLOAT_EQ(outputContrib1s[j], outputContrib3s[j]);
ASSERT_FLOAT_EQ(outputContrib1s[j], outputContrib3sSame[j]);
}
}
}
template <typename T>
void verifyMinMaxIndex2LevelDecoder(
const uint64_t n,
const uint64_t d,
const std::shared_ptr<faiss::Index>& index,
const std::vector<uint8_t>& encodedData) {
//
const float* pqFineCentroidsQ = nullptr;
const float* pqCoarseCentroidsQ = nullptr;
// extract an index that is wrapped with IndexRowwiseMinMaxBase
const std::shared_ptr<faiss::IndexRowwiseMinMaxBase> indexMinMax =
std::dynamic_pointer_cast<faiss::IndexRowwiseMinMaxBase>(index);
ASSERT_NE(indexMinMax.get(), nullptr);
auto subIndex = indexMinMax->index;
//
testIfIVFPQ(subIndex, &pqCoarseCentroidsQ, &pqFineCentroidsQ);
testIfResidualPQ(subIndex, &pqCoarseCentroidsQ, &pqFineCentroidsQ);
//
const size_t codeSize = index->sa_code_size();
//
std::default_random_engine rng(123);
std::uniform_real_distribution<float> u(0, 1);
// test general purpose version vs contrib::store
std::vector<float> outputFaiss(d, 0);
std::vector<float> tmpFaiss(d, 0);
std::vector<float> tmpContrib(d, 0);
for (size_t i = 0; i < n; i++) {
// compute using faiss
index->sa_decode(1, encodedData.data() + i * codeSize, tmpFaiss.data());
// compute using contrib
T::store(
pqCoarseCentroidsQ,
pqFineCentroidsQ,
encodedData.data() + i * codeSize,
tmpContrib.data());
// compare
for (size_t j = 0; j < d; j++)
ASSERT_FLOAT_EQ(tmpFaiss[j], tmpContrib[j]);
// save for the further comparison
const float weight = u(rng);
for (size_t j = 0; j < d; j++)
outputFaiss[j] += weight * tmpFaiss[j];
}
// test contrib::accum, 1 sample per iteration.
// This needs a way of handling that is different from just IVFPQ and PQ
// because of the scaling, but rather similar to how 2 samples per iteration
// is processed.
rng.seed(123);
std::vector<float> outputContrib1s(d, 0);
float outputMinv1s = 0;
for (size_t i = 0; i < n; i++) {
// compute using faiss
index->sa_decode(1, encodedData.data() + i * codeSize, tmpFaiss.data());
// populate some initial data
for (size_t j = 0; j < d; j++) {
outputContrib1s[j] = (j + 1) * (j + 1);
}
outputMinv1s = 0;
// generate a weight
const float weight0 = u(rng);
//
T::accum(
pqCoarseCentroidsQ,
pqFineCentroidsQ,
encodedData.data() + (i + 0) * codeSize,
weight0,
outputContrib1s.data(),
outputMinv1s);
// compare
for (size_t j = 0; j < d; j++) {
ASSERT_FLOAT_EQ(
outputContrib1s[j] + outputMinv1s,
tmpFaiss[j] * weight0 + (j + 1) * (j + 1));
}
}
// test contrib::accum, 2 samples per iteration.
rng.seed(123);
std::vector<float> outputContrib2s(d, 0);
std::vector<float> outputContrib2sSame(d, 0);
float outputMinv2s = 0;
float outputMinv2sSame = 0;
for (size_t i = 0; i < n; i += 2) {
// populate outputContribs with some existing data
for (size_t j = 0; j < d; j++) {
outputContrib1s[j] = (j + 1) * (j + 1);
outputContrib2s[j] = (j + 1) * (j + 1);
outputContrib2sSame[j] = (j + 1) * (j + 1);
}
outputMinv1s = 0;
outputMinv2s = 0;
outputMinv2sSame = 0;
// do a single step, 2 samples per step
const float weight0 = u(rng);
const float weight1 = u(rng);
T::accum(
pqCoarseCentroidsQ,
pqFineCentroidsQ,
encodedData.data() + (i + 0) * codeSize,
weight0,
pqCoarseCentroidsQ,
pqFineCentroidsQ,
encodedData.data() + (i + 1) * codeSize,
weight1,
outputContrib2s.data(),
outputMinv2s);
// do a single step, 2 samples per step
T::accum(
pqCoarseCentroidsQ,
pqFineCentroidsQ,
encodedData.data() + (i + 0) * codeSize,
weight0,
encodedData.data() + (i + 1) * codeSize,
weight1,
outputContrib2sSame.data(),
outputMinv2sSame);
// do two steps, 1 sample per step
T::accum(
pqCoarseCentroidsQ,
pqFineCentroidsQ,
encodedData.data() + (i + 0) * codeSize,
weight0,
outputContrib1s.data(),
outputMinv1s);
T::accum(
pqCoarseCentroidsQ,
pqFineCentroidsQ,
encodedData.data() + (i + 1) * codeSize,
weight1,
outputContrib1s.data(),
outputMinv1s);
// compare
for (size_t j = 0; j < d; j++) {
ASSERT_FLOAT_EQ(
outputContrib1s[j] + outputMinv1s,
outputContrib2s[j] + outputMinv2s);
ASSERT_FLOAT_EQ(
outputContrib1s[j] + outputMinv1s,
outputContrib2sSame[j] + outputMinv2sSame);
}
}
// test contrib::accum, 3 samples per iteration.
rng.seed(123);
std::vector<float> outputContrib3s(d, 0);
float outputMinv3s = 0;
std::vector<float> outputContrib3sSame(d, 0);
float outputMinv3sSame = 0;
const size_t n3 = (n / 3) * 3;
for (size_t i = 0; i < n3; i += 3) {
// populate outputContribs with some existing data
for (size_t j = 0; j < d; j++) {
outputContrib1s[j] = (j + 1) * (j + 1);
outputContrib3s[j] = (j + 1) * (j + 1);
outputContrib3sSame[j] = (j + 1) * (j + 1);
}
outputMinv1s = 0;
outputMinv3s = 0;
outputMinv3sSame = 0;
// do a single step, 3 samples per step
const float weight0 = u(rng);
const float weight1 = u(rng);
const float weight2 = u(rng);
T::accum(
pqCoarseCentroidsQ,
pqFineCentroidsQ,
encodedData.data() + (i + 0) * codeSize,
weight0,
pqCoarseCentroidsQ,
pqFineCentroidsQ,
encodedData.data() + (i + 1) * codeSize,
weight1,
pqCoarseCentroidsQ,
pqFineCentroidsQ,
encodedData.data() + (i + 2) * codeSize,
weight2,
outputContrib3s.data(),
outputMinv3s);
// do a single step, 3 samples per step
T::accum(
pqCoarseCentroidsQ,
pqFineCentroidsQ,
encodedData.data() + (i + 0) * codeSize,
weight0,
encodedData.data() + (i + 1) * codeSize,
weight1,
encodedData.data() + (i + 2) * codeSize,
weight2,
outputContrib3sSame.data(),
outputMinv3sSame);
// do three steps, 1 sample per step
T::accum(
pqCoarseCentroidsQ,
pqFineCentroidsQ,
encodedData.data() + (i + 0) * codeSize,
weight0,
outputContrib1s.data(),
outputMinv1s);
T::accum(
pqCoarseCentroidsQ,
pqFineCentroidsQ,
encodedData.data() + (i + 1) * codeSize,
weight1,
outputContrib1s.data(),
outputMinv1s);
T::accum(
pqCoarseCentroidsQ,
pqFineCentroidsQ,
encodedData.data() + (i + 2) * codeSize,
weight2,
outputContrib1s.data(),
outputMinv1s);
// compare
for (size_t j = 0; j < d; j++) {
ASSERT_FLOAT_EQ(
outputContrib1s[j] + outputMinv1s,
outputContrib3s[j] + outputMinv3s);
ASSERT_FLOAT_EQ(
outputContrib1s[j] + outputMinv1s,
outputContrib3sSame[j] + outputMinv3sSame);
}
}
}
template <typename T>
void verifyIndexPQDecoder(
const uint64_t n,
const uint64_t d,
const std::shared_ptr<faiss::Index>& index,
const std::vector<uint8_t>& encodedData) {
//
const faiss::IndexPQ* const indexQ =
dynamic_cast<const faiss::IndexPQ*>(index.get());
const float* const pqFineCentroidsQ = indexQ->pq.centroids.data();
//
const size_t codeSize = index->sa_code_size();
//
std::default_random_engine rng(123);
std::uniform_real_distribution<float> u(0, 1);
// test general purpose version vs contrib::store
std::vector<float> outputFaiss(d, 0);
std::vector<float> tmpFaiss(d, 0);
std::vector<float> tmpContrib(d, 0);
for (size_t i = 0; i < n; i++) {
// compute using faiss
index->sa_decode(1, encodedData.data() + i * codeSize, tmpFaiss.data());
// compute using contrib
T::store(
pqFineCentroidsQ,
encodedData.data() + i * codeSize,
tmpContrib.data());
// compare
for (size_t j = 0; j < d; j++)
ASSERT_FLOAT_EQ(tmpFaiss[j], tmpContrib[j]);
// save for the further comparison
const float weight = u(rng);
for (size_t j = 0; j < d; j++)
outputFaiss[j] += weight * tmpFaiss[j];
}
// test contrib::accum, 1 sample per iteration
rng.seed(123);
std::vector<float> outputContrib1s(d, 0);
for (size_t i = 0; i < n; i++) {
const float weight0 = u(rng);
T::accum(
pqFineCentroidsQ,
encodedData.data() + (i + 0) * codeSize,
weight0,
outputContrib1s.data());
}
// verify
for (size_t j = 0; j < d; j++) {
ASSERT_FLOAT_EQ(outputFaiss[j], outputContrib1s[j]);
}
// test contrib::accum, 2 samples per iteration.
rng.seed(123);
std::vector<float> outputContrib2s(d, 0);
std::vector<float> outputContrib2sSame(d, 0);
for (size_t i = 0; i < n; i += 2) {
// populate outputContribs with some existing data
for (size_t j = 0; j < d; j++) {
outputContrib1s[j] = (j + 1) * (j + 1);
outputContrib2s[j] = (j + 1) * (j + 1);
outputContrib2sSame[j] = (j + 1) * (j + 1);
}
// do a single step, 2 samples per step
const float weight0 = u(rng);
const float weight1 = u(rng);
T::accum(
pqFineCentroidsQ,
encodedData.data() + (i + 0) * codeSize,
weight0,
pqFineCentroidsQ,
encodedData.data() + (i + 1) * codeSize,
weight1,
outputContrib2s.data());
// do a single step, 2 samples per step
T::accum(
pqFineCentroidsQ,
encodedData.data() + (i + 0) * codeSize,
weight0,
encodedData.data() + (i + 1) * codeSize,
weight1,
outputContrib2sSame.data());
// do two steps, 1 sample per step
T::accum(
pqFineCentroidsQ,
encodedData.data() + (i + 0) * codeSize,
weight0,
outputContrib1s.data());
T::accum(
pqFineCentroidsQ,
encodedData.data() + (i + 1) * codeSize,
weight1,
outputContrib1s.data());
// compare
for (size_t j = 0; j < d; j++) {
ASSERT_FLOAT_EQ(outputContrib1s[j], outputContrib2s[j]);
ASSERT_FLOAT_EQ(outputContrib1s[j], outputContrib2sSame[j]);
}
}
// test contrib::accum, 3 samples per iteration.
rng.seed(123);
std::vector<float> outputContrib3s(d, 0);
std::vector<float> outputContrib3sSame(d, 0);
const size_t n3 = (n / 3) * 3;
for (size_t i = 0; i < n3; i += 3) {
// populate outputContribs with some existing data
for (size_t j = 0; j < d; j++) {
outputContrib1s[j] = (j + 1) * (j + 1);
outputContrib3s[j] = (j + 1) * (j + 1);
outputContrib3sSame[j] = (j + 1) * (j + 1);
}
// do a single step, 3 samples per step
const float weight0 = u(rng);
const float weight1 = u(rng);
const float weight2 = u(rng);
T::accum(
pqFineCentroidsQ,
encodedData.data() + (i + 0) * codeSize,
weight0,
pqFineCentroidsQ,
encodedData.data() + (i + 1) * codeSize,
weight1,
pqFineCentroidsQ,
encodedData.data() + (i + 2) * codeSize,
weight2,
outputContrib3s.data());
// do a single step, 3 samples per step
T::accum(
pqFineCentroidsQ,
encodedData.data() + (i + 0) * codeSize,
weight0,
encodedData.data() + (i + 1) * codeSize,
weight1,
encodedData.data() + (i + 2) * codeSize,
weight2,
outputContrib3sSame.data());
// do three steps, 1 sample per step
T::accum(
pqFineCentroidsQ,
encodedData.data() + (i + 0) * codeSize,
weight0,
outputContrib1s.data());
T::accum(
pqFineCentroidsQ,
encodedData.data() + (i + 1) * codeSize,
weight1,
outputContrib1s.data());
T::accum(
pqFineCentroidsQ,
encodedData.data() + (i + 2) * codeSize,
weight2,
outputContrib1s.data());
// compare
for (size_t j = 0; j < d; j++) {
ASSERT_FLOAT_EQ(outputContrib1s[j], outputContrib3s[j]);
ASSERT_FLOAT_EQ(outputContrib1s[j], outputContrib3sSame[j]);
}
}
}
template <typename T>
void verifyMinMaxIndexPQDecoder(
const uint64_t n,
const uint64_t d,
const std::shared_ptr<faiss::Index>& index,
const std::vector<uint8_t>& encodedData) {
// extract an index that is wrapped with IndexRowwiseMinMaxBase
const std::shared_ptr<faiss::IndexRowwiseMinMaxBase> indexMinMax =
std::dynamic_pointer_cast<faiss::IndexRowwiseMinMaxBase>(index);
ASSERT_NE(indexMinMax.get(), nullptr);
auto subIndex = indexMinMax->index;
//
const faiss::IndexPQ* const indexQ =
dynamic_cast<const faiss::IndexPQ*>(subIndex);
const float* const pqFineCentroidsQ = indexQ->pq.centroids.data();
//
const size_t codeSize = index->sa_code_size();
//
std::default_random_engine rng(123);
std::uniform_real_distribution<float> u(0, 1);
// test general purpose version vs contrib::store
std::vector<float> outputFaiss(d, 0);
std::vector<float> tmpFaiss(d, 0);
std::vector<float> tmpContrib(d, 0);
for (size_t i = 0; i < n; i++) {
// compute using faiss
index->sa_decode(1, encodedData.data() + i * codeSize, tmpFaiss.data());
// compute using contrib
T::store(
pqFineCentroidsQ,
encodedData.data() + i * codeSize,
tmpContrib.data());
// compare
for (size_t j = 0; j < d; j++)
ASSERT_FLOAT_EQ(tmpFaiss[j], tmpContrib[j]);
// save for the further comparison
const float weight = u(rng);
for (size_t j = 0; j < d; j++)
outputFaiss[j] += weight * tmpFaiss[j];
}
// test contrib::accum, 1 sample per iteration.
// This needs a way of handling that is different from just IVFPQ and PQ
// because of the scaling, but rather similar to how 2 samples per iteration
// is processed.
rng.seed(123);
std::vector<float> outputContrib1s(d, 0);
float outputMinv1s = 0;
for (size_t i = 0; i < n; i++) {
// compute using faiss
index->sa_decode(1, encodedData.data() + i * codeSize, tmpFaiss.data());
// populate some initial data
for (size_t j = 0; j < d; j++) {
outputContrib1s[j] = (j + 1) * (j + 1);
}
outputMinv1s = 0;
// generate a weight
const float weight0 = u(rng);
//
T::accum(
pqFineCentroidsQ,
encodedData.data() + (i + 0) * codeSize,
weight0,
outputContrib1s.data(),
outputMinv1s);
// compare
for (size_t j = 0; j < d; j++) {
ASSERT_FLOAT_EQ(
outputContrib1s[j] + outputMinv1s,
tmpFaiss[j] * weight0 + (j + 1) * (j + 1));
}
}
// test contrib::accum, 2 samples per iteration.
rng.seed(123);
std::vector<float> outputContrib2s(d, 0);
float outputMinv2s = 0;
std::vector<float> outputContrib2sSame(d, 0);
float outputMinv2sSame = 0;
for (size_t i = 0; i < n; i += 2) {
// populate outputContribs with some existing data
for (size_t j = 0; j < d; j++) {
outputContrib1s[j] = (j + 1) * (j + 1);
outputContrib2s[j] = (j + 1) * (j + 1);
outputContrib2sSame[j] = (j + 1) * (j + 1);
}
outputMinv1s = 0;
outputMinv2s = 0;
outputMinv2sSame = 0;
// do a single step, 2 samples per step
const float weight0 = u(rng);
const float weight1 = u(rng);
T::accum(
pqFineCentroidsQ,
encodedData.data() + (i + 0) * codeSize,
weight0,
pqFineCentroidsQ,
encodedData.data() + (i + 1) * codeSize,
weight1,
outputContrib2s.data(),
outputMinv2s);
// do a single step, 2 samples per step
T::accum(
pqFineCentroidsQ,
encodedData.data() + (i + 0) * codeSize,
weight0,
encodedData.data() + (i + 1) * codeSize,
weight1,
outputContrib2sSame.data(),
outputMinv2sSame);
// do two steps, 1 sample per step
T::accum(
pqFineCentroidsQ,
encodedData.data() + (i + 0) * codeSize,
weight0,
outputContrib1s.data(),
outputMinv1s);
T::accum(
pqFineCentroidsQ,
encodedData.data() + (i + 1) * codeSize,
weight1,
outputContrib1s.data(),
outputMinv1s);
// compare
for (size_t j = 0; j < d; j++) {
ASSERT_FLOAT_EQ(
outputContrib1s[j] + outputMinv1s,
outputContrib2s[j] + outputMinv2s);
ASSERT_FLOAT_EQ(
outputContrib1s[j] + outputMinv1s,
outputContrib2sSame[j] + outputMinv2sSame);
}
}
// test contrib::accum, 3 samples per iteration.
rng.seed(123);
std::vector<float> outputContrib3s(d, 0);
float outputMinv3s = 0;
std::vector<float> outputContrib3sSame(d, 0);
float outputMinv3sSame = 0;
const size_t n3 = (n / 3) * 3;
for (size_t i = 0; i < n3; i += 3) {
// populate outputContribs with some existing data
for (size_t j = 0; j < d; j++) {
outputContrib1s[j] = (j + 1) * (j + 1);
outputContrib3s[j] = (j + 1) * (j + 1);
outputContrib3sSame[j] = (j + 1) * (j + 1);
}
outputMinv1s = 0;
outputMinv3s = 0;
outputMinv3sSame = 0;
// do a single step, 3 samples per step
const float weight0 = u(rng);
const float weight1 = u(rng);
const float weight2 = u(rng);
T::accum(
pqFineCentroidsQ,
encodedData.data() + (i + 0) * codeSize,
weight0,
pqFineCentroidsQ,
encodedData.data() + (i + 1) * codeSize,
weight1,
pqFineCentroidsQ,
encodedData.data() + (i + 2) * codeSize,
weight2,
outputContrib3s.data(),
outputMinv3s);
// do a single step, 3 samples per step
T::accum(
pqFineCentroidsQ,
encodedData.data() + (i + 0) * codeSize,
weight0,
encodedData.data() + (i + 1) * codeSize,
weight1,
encodedData.data() + (i + 2) * codeSize,
weight2,
outputContrib3sSame.data(),
outputMinv3sSame);
// do three steps, 1 sample per step
T::accum(
pqFineCentroidsQ,
encodedData.data() + (i + 0) * codeSize,
weight0,
outputContrib1s.data(),
outputMinv1s);
T::accum(
pqFineCentroidsQ,
encodedData.data() + (i + 1) * codeSize,
weight1,
outputContrib1s.data(),
outputMinv1s);
T::accum(
pqFineCentroidsQ,
encodedData.data() + (i + 2) * codeSize,
weight2,
outputContrib1s.data(),
outputMinv1s);
// compare
for (size_t j = 0; j < d; j++) {
ASSERT_FLOAT_EQ(
outputContrib1s[j] + outputMinv1s,
outputContrib3s[j] + outputMinv3s);
ASSERT_FLOAT_EQ(
outputContrib1s[j] + outputMinv1s,
outputContrib3sSame[j] + outputMinv3sSame);
}
}
}
std::vector<float> generate(const size_t n, const size_t d) {
std::vector<float> data(n * d);
std::minstd_rand rng(345);
std::uniform_real_distribution<float> ux(0, 1);
//
for (size_t k = 0; k < n; k++) {
for (size_t j = 0; j < d; j++) {
data[k * d + j] = ux(rng);
}
}
return data;
}
template <typename T>
void testIndex2LevelDecoder(
const uint64_t n,
const uint64_t d,
const std::string& description) {
auto data = generate(n, d);
std::shared_ptr<faiss::Index> index;
std::vector<uint8_t> encodedData;
std::tie(index, encodedData) = trainDataset(data, n, d, description);
verifyIndex2LevelDecoder<T>(n, d, index, encodedData);
}
template <typename T>
void testMinMaxIndex2LevelDecoder(
const uint64_t n,
const uint64_t d,
const std::string& description) {
auto data = generate(n, d);
std::shared_ptr<faiss::Index> index;
std::vector<uint8_t> encodedData;
std::tie(index, encodedData) = trainDataset(data, n, d, description);
verifyMinMaxIndex2LevelDecoder<T>(n, d, index, encodedData);
}
template <typename T>
void testIndexPQDecoder(
const uint64_t n,
const uint64_t d,
const std::string& description) {
auto data = generate(n, d);
std::shared_ptr<faiss::Index> index;
std::vector<uint8_t> encodedData;
std::tie(index, encodedData) = trainDataset(data, n, d, description);
verifyIndexPQDecoder<T>(n, d, index, encodedData);
}
template <typename T>
void testMinMaxIndexPQDecoder(
const uint64_t n,
const uint64_t d,
const std::string& description) {
auto data = generate(n, d);
std::shared_ptr<faiss::Index> index;
std::vector<uint8_t> encodedData;
std::tie(index, encodedData) = trainDataset(data, n, d, description);
verifyMinMaxIndexPQDecoder<T>(n, d, index, encodedData);
}
constexpr size_t NSAMPLES = 4096;
//
TEST(TEST_CPPCONTRIB_SA_DECODE, D256_IVF256_PQ16) {
using T = faiss::cppcontrib::Index2LevelDecoder<256, 256, 16>;
testIndex2LevelDecoder<T>(NSAMPLES, 256, "IVF256,PQ16np");
}
TEST(TEST_CPPCONTRIB_SA_DECODE, D256_IVF256_PQ8) {
using T = faiss::cppcontrib::Index2LevelDecoder<256, 256, 32>;
testIndex2LevelDecoder<T>(NSAMPLES, 256, "IVF256,PQ8np");
}
//
TEST(TEST_CPPCONTRIB_SA_DECODE, D192_IVF256_PQ24) {
using T = faiss::cppcontrib::Index2LevelDecoder<192, 192, 8>;
testIndex2LevelDecoder<T>(NSAMPLES, 192, "IVF256,PQ24np");
}
//
TEST(TEST_CPPCONTRIB_SA_DECODE, D192_IVF256_PQ16) {
using T = faiss::cppcontrib::Index2LevelDecoder<192, 192, 12>;
testIndex2LevelDecoder<T>(NSAMPLES, 192, "IVF256,PQ16np");
}
//
TEST(TEST_CPPCONTRIB_SA_DECODE, D192_IVF256_PQ12) {
using T = faiss::cppcontrib::Index2LevelDecoder<192, 192, 16>;
testIndex2LevelDecoder<T>(NSAMPLES, 192, "IVF256,PQ12np");
}
//
TEST(TEST_CPPCONTRIB_SA_DECODE, D160_IVF256_PQ40) {
using T = faiss::cppcontrib::Index2LevelDecoder<160, 160, 4>;
testIndex2LevelDecoder<T>(NSAMPLES, 160, "IVF256,PQ40np");
}
//
TEST(TEST_CPPCONTRIB_SA_DECODE, D160_IVF256_PQ20) {
using T = faiss::cppcontrib::Index2LevelDecoder<160, 160, 8>;
testIndex2LevelDecoder<T>(NSAMPLES, 160, "IVF256,PQ20np");
}
//
TEST(TEST_CPPCONTRIB_SA_DECODE, D160_IVF256_PQ10) {
using T = faiss::cppcontrib::Index2LevelDecoder<160, 160, 16>;
testIndex2LevelDecoder<T>(NSAMPLES, 160, "IVF256,PQ10np");
}
//
TEST(TEST_CPPCONTRIB_SA_DECODE, D160_IVF256_PQ8) {
using T = faiss::cppcontrib::Index2LevelDecoder<160, 160, 20>;
testIndex2LevelDecoder<T>(NSAMPLES, 160, "IVF256,PQ8np");
}
//
TEST(TEST_CPPCONTRIB_SA_DECODE, D128_IVF256_PQ8) {
using T = faiss::cppcontrib::Index2LevelDecoder<128, 128, 16>;
testIndex2LevelDecoder<T>(NSAMPLES, 128, "IVF256,PQ8np");
}
TEST(TEST_CPPCONTRIB_SA_DECODE, D128_IVF256_PQ4) {
using T = faiss::cppcontrib::Index2LevelDecoder<128, 128, 32>;
testIndex2LevelDecoder<T>(NSAMPLES, 128, "IVF256,PQ4np");
}
//
TEST(TEST_CPPCONTRIB_SA_DECODE, D64_IVF256_PQ16) {
using T = faiss::cppcontrib::Index2LevelDecoder<64, 64, 8>;
testIndex2LevelDecoder<T>(NSAMPLES, 64, "IVF256,PQ8np");
}
TEST(TEST_CPPCONTRIB_SA_DECODE, D64_IVF256_PQ8) {
using T = faiss::cppcontrib::Index2LevelDecoder<64, 64, 16>;
testIndex2LevelDecoder<T>(NSAMPLES, 64, "IVF256,PQ4np");
}
#if defined(__AVX2__)
TEST(TEST_CPPCONTRIB_SA_DECODE, D40_IVF256_PQ20) {
using T = faiss::cppcontrib::Index2LevelDecoder<40, 40, 2>;
testIndex2LevelDecoder<T>(NSAMPLES, 40, "IVF256,PQ20np");
}
#endif
//
TEST(TEST_CPPCONTRIB_SA_DECODE, D256_Residual4x8_PQ16) {
using T = faiss::cppcontrib::Index2LevelDecoder<256, 64, 16>;
testIndex2LevelDecoder<T>(NSAMPLES, 256, "Residual4x8,PQ16");
}
TEST(TEST_CPPCONTRIB_SA_DECODE, D256_Residual4x8_PQ8) {
using T = faiss::cppcontrib::Index2LevelDecoder<256, 64, 32>;
testIndex2LevelDecoder<T>(NSAMPLES, 256, "Residual4x8,PQ8");
}
//
TEST(TEST_CPPCONTRIB_SA_DECODE, D160_Residual4x8_PQ10) {
using T = faiss::cppcontrib::Index2LevelDecoder<160, 40, 16>;
testIndex2LevelDecoder<T>(NSAMPLES, 160, "Residual4x8,PQ10");
}
//
TEST(TEST_CPPCONTRIB_SA_DECODE, D160_Residual2x8_PQ10) {
using T = faiss::cppcontrib::Index2LevelDecoder<160, 80, 16>;
testIndex2LevelDecoder<T>(NSAMPLES, 160, "Residual2x8,PQ10");
}
//
TEST(TEST_CPPCONTRIB_SA_DECODE, D160_Residual1x8_PQ10) {
using T = faiss::cppcontrib::Index2LevelDecoder<160, 160, 16>;
testIndex2LevelDecoder<T>(NSAMPLES, 160, "Residual1x8,PQ10");
}
//
TEST(TEST_CPPCONTRIB_SA_DECODE, D128_Residual4x8_PQ8) {
using T = faiss::cppcontrib::Index2LevelDecoder<128, 32, 16>;
testIndex2LevelDecoder<T>(NSAMPLES, 128, "Residual4x8,PQ8");
}
TEST(TEST_CPPCONTRIB_SA_DECODE, D128_Residual4x8_PQ4) {
using T = faiss::cppcontrib::Index2LevelDecoder<128, 32, 32>;
testIndex2LevelDecoder<T>(NSAMPLES, 128, "Residual4x8,PQ4");
}
//
TEST(TEST_CPPCONTRIB_SA_DECODE, D64_Residual4x8_PQ8) {
using T = faiss::cppcontrib::Index2LevelDecoder<64, 16, 8>;
testIndex2LevelDecoder<T>(NSAMPLES, 64, "Residual4x8,PQ8");
}
TEST(TEST_CPPCONTRIB_SA_DECODE, D64_Residual4x8_PQ4) {
using T = faiss::cppcontrib::Index2LevelDecoder<64, 16, 16>;
testIndex2LevelDecoder<T>(NSAMPLES, 64, "Residual4x8,PQ4");
}
//
TEST(TEST_CPPCONTRIB_SA_DECODE, D256_IVF1024_PQ16) {
// It is acceptable to use COARSE_BITS=16 in this case,
// because there's only one coarse quantizer element.
using T = faiss::cppcontrib::Index2LevelDecoder<256, 256, 16, 16>;
testIndex2LevelDecoder<T>(NSAMPLES, 256, "IVF1024,PQ16np");
}
TEST(TEST_CPPCONTRIB_SA_DECODE, D64_Residual1x9_PQ8) {
// It is acceptable to use COARSE_BITS=16 in this case,
// because there's only one coarse quantizer element.
// It won't work for "Residual2x9,PQ8".
using T = faiss::cppcontrib::Index2LevelDecoder<64, 64, 8, 16>;
testIndex2LevelDecoder<T>(NSAMPLES, 64, "Residual1x9,PQ8");
}
//
TEST(TEST_CPPCONTRIB_SA_DECODE, D256_PQ16) {
using T = faiss::cppcontrib::IndexPQDecoder<256, 16>;
testIndexPQDecoder<T>(NSAMPLES, 256, "PQ16np");
}
//
TEST(TEST_CPPCONTRIB_SA_DECODE, D160_PQ20) {
using T = faiss::cppcontrib::IndexPQDecoder<160, 8>;
testIndexPQDecoder<T>(NSAMPLES, 160, "PQ20np");
}
#if defined(__AVX2__)
TEST(TEST_CPPCONTRIB_SA_DECODE, D40_PQ20) {
using T = faiss::cppcontrib::IndexPQDecoder<40, 2>;
testIndexPQDecoder<T>(NSAMPLES, 40, "PQ20np");
}
#endif
// test IndexRowwiseMinMaxFP16
TEST(TEST_CPPCONTRIB_SA_DECODE, D256_MINMAXFP16_IVF256_PQ16) {
using SubT = faiss::cppcontrib::Index2LevelDecoder<256, 256, 16>;
using T = faiss::cppcontrib::IndexMinMaxFP16Decoder<SubT>;
testMinMaxIndex2LevelDecoder<T>(NSAMPLES, 256, "MinMaxFP16,IVF256,PQ16np");
}
TEST(TEST_CPPCONTRIB_SA_DECODE, D256_MINMAXFP16_PQ16) {
using SubT = faiss::cppcontrib::IndexPQDecoder<256, 16>;
using T = faiss::cppcontrib::IndexMinMaxFP16Decoder<SubT>;
testMinMaxIndexPQDecoder<T>(NSAMPLES, 256, "MinMaxFP16,PQ16np");
}
// test IndexRowwiseMinMax
TEST(TEST_CPPCONTRIB_SA_DECODE, D256_MINMAX_IVF256_PQ16) {
using SubT = faiss::cppcontrib::Index2LevelDecoder<256, 256, 16>;
using T = faiss::cppcontrib::IndexMinMaxDecoder<SubT>;
testMinMaxIndex2LevelDecoder<T>(NSAMPLES, 256, "MinMax,IVF256,PQ16np");
}
TEST(TEST_CPPCONTRIB_SA_DECODE, D256_MINMAX_PQ16) {
using SubT = faiss::cppcontrib::IndexPQDecoder<256, 16>;
using T = faiss::cppcontrib::IndexMinMaxDecoder<SubT>;
testMinMaxIndexPQDecoder<T>(NSAMPLES, 256, "MinMax,PQ16np");
}
// implemented for AVX2 and ARM so far
#if defined(__AVX2__) || defined(__ARM_NEON)
TEST(TEST_CPPCONTRIB_SA_DECODE, D256_PQ16x10) {
using T = faiss::cppcontrib::IndexPQDecoder<256, 16, 10>;
testIndexPQDecoder<T>(NSAMPLES, 256, "PQ16x10np");
}
TEST(TEST_CPPCONTRIB_SA_DECODE, D160_PQ20x10) {
using T = faiss::cppcontrib::IndexPQDecoder<160, 8, 10>;
testIndexPQDecoder<T>(NSAMPLES, 160, "PQ20x10np");
}
TEST(TEST_CPPCONTRIB_SA_DECODE, D160_Residual4x8_PQ8x10) {
using T = faiss::cppcontrib::Index2LevelDecoder<160, 40, 20, 8, 10>;
testIndex2LevelDecoder<T>(NSAMPLES, 160, "Residual4x8,PQ8x10");
}
TEST(TEST_CPPCONTRIB_SA_DECODE, D256_Residual1x9_PQ16x10) {
// It is acceptable to use COARSE_BITS=16 in this case,
// because there's only one coarse quantizer element.
// It won't work for "Residual2x9,PQ16x10".
using T = faiss::cppcontrib::Index2LevelDecoder<256, 256, 16, 16, 10>;
testIndex2LevelDecoder<T>(NSAMPLES, 256, "Residual1x9,PQ16x10");
}
TEST(TEST_CPPCONTRIB_SA_DECODE, D256_Residual4x10_PQ16x10) {
using T = faiss::cppcontrib::Index2LevelDecoder<256, 64, 16, 10, 10>;
testIndex2LevelDecoder<T>(NSAMPLES, 256, "Residual4x10,PQ16x10");
}
#endif