faiss/gpu/impl/IVFUtilsSelect2.cu

217 lines
7.5 KiB
Plaintext

/**
* Copyright (c) 2015-present, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under the CC-by-NC license found in the
* LICENSE file in the root directory of this source tree.
*/
// Copyright 2004-present Facebook. All Rights Reserved.
#include "IVFUtils.cuh"
#include "../utils/DeviceUtils.h"
#include "../utils/Select.cuh"
#include "../utils/StaticUtils.h"
#include "../utils/Tensor.cuh"
#include <limits>
//
// This kernel is split into a separate compilation unit to cut down
// on compile time
//
namespace faiss { namespace gpu {
constexpr auto kMax = std::numeric_limits<float>::max();
constexpr auto kMin = std::numeric_limits<float>::min();
// This is warp divergence central, but this is really a final step
// and happening a small number of times
inline __device__ int binarySearchForBucket(int* prefixSumOffsets,
int size,
int val) {
int start = 0;
int end = size;
while (end - start > 0) {
int mid = start + (end - start) / 2;
int midVal = prefixSumOffsets[mid];
// Find the first bucket that we are <=
if (midVal <= val) {
start = mid + 1;
} else {
end = mid;
}
}
// We must find the bucket that it is in
assert(start != size);
return start;
}
template <int ThreadsPerBlock,
int NumWarpQ,
int NumThreadQ,
bool Dir>
__global__ void
pass2SelectLists(Tensor<float, 2, true> heapDistances,
Tensor<int, 2, true> heapIndices,
void** listIndices,
Tensor<int, 2, true> prefixSumOffsets,
Tensor<int, 2, true> topQueryToCentroid,
int k,
IndicesOptions opt,
Tensor<float, 2, true> outDistances,
Tensor<long, 2, true> outIndices) {
constexpr int kNumWarps = ThreadsPerBlock / kWarpSize;
__shared__ float smemK[kNumWarps * NumWarpQ];
__shared__ int smemV[kNumWarps * NumWarpQ];
constexpr auto kInit = Dir ? kMin : kMax;
BlockSelect<float, int, Dir, Comparator<float>,
NumWarpQ, NumThreadQ, ThreadsPerBlock>
heap(kInit, -1, smemK, smemV, k);
auto queryId = blockIdx.x;
int num = heapDistances.getSize(1);
int limit = utils::roundDown(num, kWarpSize);
int i = threadIdx.x;
auto heapDistanceStart = heapDistances[queryId];
// BlockSelect add cannot be used in a warp divergent circumstance; we
// handle the remainder warp below
for (; i < limit; i += blockDim.x) {
heap.add(heapDistanceStart[i], i);
}
// Handle warp divergence separately
if (i < num) {
heap.addThreadQ(heapDistanceStart[i], i);
}
// Merge all final results
heap.reduce();
for (int i = threadIdx.x; i < k; i += blockDim.x) {
outDistances[queryId][i] = smemK[i];
// `v` is the index in `heapIndices`
// We need to translate this into an original user index. The
// reason why we don't maintain intermediate results in terms of
// user indices is to substantially reduce temporary memory
// requirements and global memory write traffic for the list
// scanning.
// This code is highly divergent, but it's probably ok, since this
// is the very last step and it is happening a small number of
// times (#queries x k).
int v = smemV[i];
long index = -1;
if (v != -1) {
// `offset` is the offset of the intermediate result, as
// calculated by the original scan.
int offset = heapIndices[queryId][v];
// In order to determine the actual user index, we need to first
// determine what list it was in.
// We do this by binary search in the prefix sum list.
int probe = binarySearchForBucket(prefixSumOffsets[queryId].data(),
prefixSumOffsets.getSize(1),
offset);
// This is then the probe for the query; we can find the actual
// list ID from this
int listId = topQueryToCentroid[queryId][probe];
// Now, we need to know the offset within the list
// We ensure that before the array (at offset -1), there is a 0 value
int listStart = *(prefixSumOffsets[queryId][probe].data() - 1);
int listOffset = offset - listStart;
// This gives us our final index
if (opt == INDICES_32_BIT) {
index = (long) ((int*) listIndices[listId])[listOffset];
} else if (opt == INDICES_64_BIT) {
index = ((long*) listIndices[listId])[listOffset];
} else {
index = ((long) listId << 32 | (long) listOffset);
}
}
outIndices[queryId][i] = index;
}
}
void
runPass2SelectLists(Tensor<float, 2, true>& heapDistances,
Tensor<int, 2, true>& heapIndices,
thrust::device_vector<void*>& listIndices,
IndicesOptions indicesOptions,
Tensor<int, 2, true>& prefixSumOffsets,
Tensor<int, 2, true>& topQueryToCentroid,
int k,
bool chooseLargest,
Tensor<float, 2, true>& outDistances,
Tensor<long, 2, true>& outIndices,
cudaStream_t stream) {
constexpr auto kThreadsPerBlock = 128;
auto grid = dim3(topQueryToCentroid.getSize(0));
auto block = dim3(kThreadsPerBlock);
#define RUN_PASS(NUM_WARP_Q, NUM_THREAD_Q, DIR) \
do { \
pass2SelectLists<kThreadsPerBlock, \
NUM_WARP_Q, NUM_THREAD_Q, DIR> \
<<<grid, block, 0, stream>>>(heapDistances, \
heapIndices, \
listIndices.data().get(), \
prefixSumOffsets, \
topQueryToCentroid, \
k, \
indicesOptions, \
outDistances, \
outIndices); \
return; /* success */ \
} while (0)
#define RUN_PASS_DIR(DIR) \
do { \
if (k == 1) { \
RUN_PASS(1, 1, DIR); \
} else if (k <= 32) { \
RUN_PASS(32, 2, DIR); \
} else if (k <= 64) { \
RUN_PASS(64, 3, DIR); \
} else if (k <= 128) { \
RUN_PASS(128, 3, DIR); \
} else if (k <= 256) { \
RUN_PASS(256, 4, DIR); \
} else if (k <= 512) { \
RUN_PASS(512, 8, DIR); \
} else if (k <= 1024) { \
RUN_PASS(1024, 8, DIR); \
} \
} while (0)
if (chooseLargest) {
RUN_PASS_DIR(true);
} else {
RUN_PASS_DIR(false);
}
// unimplemented / too many resources
FAISS_ASSERT(false);
#undef RUN_PASS_DIR
#undef RUN_PASS
}
} } // namespace