faiss/faiss/IndexIVFPQ.cpp

1390 lines
44 KiB
C++

/**
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
// -*- c++ -*-
#include <faiss/IndexIVFPQ.h>
#include <stdint.h>
#include <cassert>
#include <cinttypes>
#include <cmath>
#include <cstdio>
#include <algorithm>
#include <faiss/utils/Heap.h>
#include <faiss/utils/distances.h>
#include <faiss/utils/utils.h>
#include <faiss/Clustering.h>
#include <faiss/IndexFlat.h>
#include <faiss/utils/hamming.h>
#include <faiss/impl/FaissAssert.h>
#include <faiss/impl/AuxIndexStructures.h>
#include <faiss/impl/IDSelector.h>
#include <faiss/impl/ProductQuantizer.h>
#include <faiss/impl/code_distance/code_distance.h>
namespace faiss {
/*****************************************
* IndexIVFPQ implementation
******************************************/
IndexIVFPQ::IndexIVFPQ(
Index* quantizer,
size_t d,
size_t nlist,
size_t M,
size_t nbits_per_idx,
MetricType metric)
: IndexIVF(quantizer, d, nlist, 0, metric), pq(d, M, nbits_per_idx) {
code_size = pq.code_size;
invlists->code_size = code_size;
is_trained = false;
by_residual = true;
use_precomputed_table = 0;
scan_table_threshold = 0;
polysemous_training = nullptr;
do_polysemous_training = false;
polysemous_ht = 0;
}
/****************************************************************
* training */
void IndexIVFPQ::train_encoder(idx_t n, const float* x, const idx_t* assign) {
pq.train(n, x);
if (do_polysemous_training) {
if (verbose)
printf("doing polysemous training for PQ\n");
PolysemousTraining default_pt;
PolysemousTraining* pt =
polysemous_training ? polysemous_training : &default_pt;
pt->optimize_pq_for_hamming(pq, n, x);
}
if (by_residual) {
precompute_table();
}
}
idx_t IndexIVFPQ::train_encoder_num_vectors() const {
return pq.cp.max_points_per_centroid * pq.ksub;
}
/****************************************************************
* IVFPQ as codec */
/* produce a binary signature based on the residual vector */
void IndexIVFPQ::encode(idx_t key, const float* x, uint8_t* code) const {
if (by_residual) {
std::vector<float> residual_vec(d);
quantizer->compute_residual(x, residual_vec.data(), key);
pq.compute_code(residual_vec.data(), code);
} else
pq.compute_code(x, code);
}
void IndexIVFPQ::encode_multiple(
size_t n,
idx_t* keys,
const float* x,
uint8_t* xcodes,
bool compute_keys) const {
if (compute_keys)
quantizer->assign(n, x, keys);
encode_vectors(n, x, keys, xcodes);
}
void IndexIVFPQ::decode_multiple(
size_t n,
const idx_t* keys,
const uint8_t* xcodes,
float* x) const {
pq.decode(xcodes, x, n);
if (by_residual) {
std::vector<float> centroid(d);
for (size_t i = 0; i < n; i++) {
quantizer->reconstruct(keys[i], centroid.data());
float* xi = x + i * d;
for (size_t j = 0; j < d; j++) {
xi[j] += centroid[j];
}
}
}
}
/****************************************************************
* add */
void IndexIVFPQ::add_core(
idx_t n,
const float* x,
const idx_t* xids,
const idx_t* coarse_idx) {
add_core_o(n, x, xids, nullptr, coarse_idx);
}
static float* compute_residuals(
const Index* quantizer,
idx_t n,
const float* x,
const idx_t* list_nos) {
size_t d = quantizer->d;
float* residuals = new float[n * d];
// TODO: parallelize?
for (size_t i = 0; i < n; i++) {
if (list_nos[i] < 0)
memset(residuals + i * d, 0, sizeof(*residuals) * d);
else
quantizer->compute_residual(
x + i * d, residuals + i * d, list_nos[i]);
}
return residuals;
}
void IndexIVFPQ::encode_vectors(
idx_t n,
const float* x,
const idx_t* list_nos,
uint8_t* codes,
bool include_listnos) const {
if (by_residual) {
float* to_encode = compute_residuals(quantizer, n, x, list_nos);
ScopeDeleter<float> del(to_encode);
pq.compute_codes(to_encode, codes, n);
} else {
pq.compute_codes(x, codes, n);
}
if (include_listnos) {
size_t coarse_size = coarse_code_size();
for (idx_t i = n - 1; i >= 0; i--) {
uint8_t* code = codes + i * (coarse_size + code_size);
memmove(code + coarse_size, codes + i * code_size, code_size);
encode_listno(list_nos[i], code);
}
}
}
void IndexIVFPQ::sa_decode(idx_t n, const uint8_t* codes, float* x) const {
size_t coarse_size = coarse_code_size();
#pragma omp parallel
{
std::vector<float> residual(d);
#pragma omp for
for (idx_t i = 0; i < n; i++) {
const uint8_t* code = codes + i * (code_size + coarse_size);
int64_t list_no = decode_listno(code);
float* xi = x + i * d;
pq.decode(code + coarse_size, xi);
if (by_residual) {
quantizer->reconstruct(list_no, residual.data());
for (size_t j = 0; j < d; j++) {
xi[j] += residual[j];
}
}
}
}
}
// block size used in IndexIVFPQ::add_core_o
int index_ivfpq_add_core_o_bs = 32768;
void IndexIVFPQ::add_core_o(
idx_t n,
const float* x,
const idx_t* xids,
float* residuals_2,
const idx_t* precomputed_idx) {
idx_t bs = index_ivfpq_add_core_o_bs;
if (n > bs) {
for (idx_t i0 = 0; i0 < n; i0 += bs) {
idx_t i1 = std::min(i0 + bs, n);
if (verbose) {
printf("IndexIVFPQ::add_core_o: adding %" PRId64 ":%" PRId64
" / %" PRId64 "\n",
i0,
i1,
n);
}
add_core_o(
i1 - i0,
x + i0 * d,
xids ? xids + i0 : nullptr,
residuals_2 ? residuals_2 + i0 * d : nullptr,
precomputed_idx ? precomputed_idx + i0 : nullptr);
}
return;
}
InterruptCallback::check();
direct_map.check_can_add(xids);
FAISS_THROW_IF_NOT(is_trained);
double t0 = getmillisecs();
const idx_t* idx;
ScopeDeleter<idx_t> del_idx;
if (precomputed_idx) {
idx = precomputed_idx;
} else {
idx_t* idx0 = new idx_t[n];
del_idx.set(idx0);
quantizer->assign(n, x, idx0);
idx = idx0;
}
double t1 = getmillisecs();
uint8_t* xcodes = new uint8_t[n * code_size];
ScopeDeleter<uint8_t> del_xcodes(xcodes);
const float* to_encode = nullptr;
ScopeDeleter<float> del_to_encode;
if (by_residual) {
to_encode = compute_residuals(quantizer, n, x, idx);
del_to_encode.set(to_encode);
} else {
to_encode = x;
}
pq.compute_codes(to_encode, xcodes, n);
double t2 = getmillisecs();
// TODO: parallelize?
size_t n_ignore = 0;
for (size_t i = 0; i < n; i++) {
idx_t key = idx[i];
idx_t id = xids ? xids[i] : ntotal + i;
if (key < 0) {
direct_map.add_single_id(id, -1, 0);
n_ignore++;
if (residuals_2)
memset(residuals_2, 0, sizeof(*residuals_2) * d);
continue;
}
uint8_t* code = xcodes + i * code_size;
size_t offset = invlists->add_entry(key, id, code);
if (residuals_2) {
float* res2 = residuals_2 + i * d;
const float* xi = to_encode + i * d;
pq.decode(code, res2);
for (int j = 0; j < d; j++)
res2[j] = xi[j] - res2[j];
}
direct_map.add_single_id(id, key, offset);
}
double t3 = getmillisecs();
if (verbose) {
char comment[100] = {0};
if (n_ignore > 0)
snprintf(comment, 100, "(%zd vectors ignored)", n_ignore);
printf(" add_core times: %.3f %.3f %.3f %s\n",
t1 - t0,
t2 - t1,
t3 - t2,
comment);
}
ntotal += n;
}
void IndexIVFPQ::reconstruct_from_offset(
int64_t list_no,
int64_t offset,
float* recons) const {
const uint8_t* code = invlists->get_single_code(list_no, offset);
if (by_residual) {
std::vector<float> centroid(d);
quantizer->reconstruct(list_no, centroid.data());
pq.decode(code, recons);
for (int i = 0; i < d; ++i) {
recons[i] += centroid[i];
}
} else {
pq.decode(code, recons);
}
}
/// 2G by default, accommodates tables up to PQ32 w/ 65536 centroids
size_t precomputed_table_max_bytes = ((size_t)1) << 31;
/** Precomputed tables for residuals
*
* During IVFPQ search with by_residual, we compute
*
* d = || x - y_C - y_R ||^2
*
* where x is the query vector, y_C the coarse centroid, y_R the
* refined PQ centroid. The expression can be decomposed as:
*
* d = || x - y_C ||^2 + || y_R ||^2 + 2 * (y_C|y_R) - 2 * (x|y_R)
* --------------- --------------------------- -------
* term 1 term 2 term 3
*
* When using multiprobe, we use the following decomposition:
* - term 1 is the distance to the coarse centroid, that is computed
* during the 1st stage search.
* - term 2 can be precomputed, as it does not involve x. However,
* because of the PQ, it needs nlist * M * ksub storage. This is why
* use_precomputed_table is off by default
* - term 3 is the classical non-residual distance table.
*
* Since y_R defined by a product quantizer, it is split across
* subvectors and stored separately for each subvector. If the coarse
* quantizer is a MultiIndexQuantizer then the table can be stored
* more compactly.
*
* At search time, the tables for term 2 and term 3 are added up. This
* is faster when the length of the lists is > ksub * M.
*/
void initialize_IVFPQ_precomputed_table(
int& use_precomputed_table,
const Index* quantizer,
const ProductQuantizer& pq,
AlignedTable<float>& precomputed_table,
bool by_residual,
bool verbose) {
size_t nlist = quantizer->ntotal;
size_t d = quantizer->d;
FAISS_THROW_IF_NOT(d == pq.d);
if (use_precomputed_table == -1) {
precomputed_table.resize(0);
return;
}
if (use_precomputed_table == 0) { // then choose the type of table
if (!(quantizer->metric_type == METRIC_L2 && by_residual)) {
if (verbose) {
printf("IndexIVFPQ::precompute_table: precomputed "
"tables needed only for L2 metric and by_residual is enabled\n");
}
precomputed_table.resize(0);
return;
}
const MultiIndexQuantizer* miq =
dynamic_cast<const MultiIndexQuantizer*>(quantizer);
if (miq && pq.M % miq->pq.M == 0)
use_precomputed_table = 2;
else {
size_t table_size = pq.M * pq.ksub * nlist * sizeof(float);
if (table_size > precomputed_table_max_bytes) {
if (verbose) {
printf("IndexIVFPQ::precompute_table: not precomputing table, "
"it would be too big: %zd bytes (max %zd)\n",
table_size,
precomputed_table_max_bytes);
use_precomputed_table = 0;
}
return;
}
use_precomputed_table = 1;
}
} // otherwise assume user has set appropriate flag on input
if (verbose) {
printf("precomputing IVFPQ tables type %d\n", use_precomputed_table);
}
// squared norms of the PQ centroids
std::vector<float> r_norms(pq.M * pq.ksub, NAN);
for (int m = 0; m < pq.M; m++)
for (int j = 0; j < pq.ksub; j++)
r_norms[m * pq.ksub + j] =
fvec_norm_L2sqr(pq.get_centroids(m, j), pq.dsub);
if (use_precomputed_table == 1) {
precomputed_table.resize(nlist * pq.M * pq.ksub);
std::vector<float> centroid(d);
for (size_t i = 0; i < nlist; i++) {
quantizer->reconstruct(i, centroid.data());
float* tab = &precomputed_table[i * pq.M * pq.ksub];
pq.compute_inner_prod_table(centroid.data(), tab);
fvec_madd(pq.M * pq.ksub, r_norms.data(), 2.0, tab, tab);
}
} else if (use_precomputed_table == 2) {
const MultiIndexQuantizer* miq =
dynamic_cast<const MultiIndexQuantizer*>(quantizer);
FAISS_THROW_IF_NOT(miq);
const ProductQuantizer& cpq = miq->pq;
FAISS_THROW_IF_NOT(pq.M % cpq.M == 0);
precomputed_table.resize(cpq.ksub * pq.M * pq.ksub);
// reorder PQ centroid table
std::vector<float> centroids(d * cpq.ksub, NAN);
for (int m = 0; m < cpq.M; m++) {
for (size_t i = 0; i < cpq.ksub; i++) {
memcpy(centroids.data() + i * d + m * cpq.dsub,
cpq.get_centroids(m, i),
sizeof(*centroids.data()) * cpq.dsub);
}
}
pq.compute_inner_prod_tables(
cpq.ksub, centroids.data(), precomputed_table.data());
for (size_t i = 0; i < cpq.ksub; i++) {
float* tab = &precomputed_table[i * pq.M * pq.ksub];
fvec_madd(pq.M * pq.ksub, r_norms.data(), 2.0, tab, tab);
}
}
}
void IndexIVFPQ::precompute_table() {
initialize_IVFPQ_precomputed_table(
use_precomputed_table,
quantizer,
pq,
precomputed_table,
by_residual,
verbose);
}
namespace {
#define TIC t0 = get_cycles()
#define TOC get_cycles() - t0
/** QueryTables manages the various ways of searching an
* IndexIVFPQ. The code contains a lot of branches, depending on:
* - metric_type: are we computing L2 or Inner product similarity?
* - by_residual: do we encode raw vectors or residuals?
* - use_precomputed_table: are x_R|x_C tables precomputed?
* - polysemous_ht: are we filtering with polysemous codes?
*/
struct QueryTables {
/*****************************************************
* General data from the IVFPQ
*****************************************************/
const IndexIVFPQ& ivfpq;
const IVFSearchParameters* params;
// copied from IndexIVFPQ for easier access
int d;
const ProductQuantizer& pq;
MetricType metric_type;
bool by_residual;
int use_precomputed_table;
int polysemous_ht;
// pre-allocated data buffers
float *sim_table, *sim_table_2;
float *residual_vec, *decoded_vec;
// single data buffer
std::vector<float> mem;
// for table pointers
std::vector<const float*> sim_table_ptrs;
explicit QueryTables(
const IndexIVFPQ& ivfpq,
const IVFSearchParameters* params)
: ivfpq(ivfpq),
d(ivfpq.d),
pq(ivfpq.pq),
metric_type(ivfpq.metric_type),
by_residual(ivfpq.by_residual),
use_precomputed_table(ivfpq.use_precomputed_table) {
mem.resize(pq.ksub * pq.M * 2 + d * 2);
sim_table = mem.data();
sim_table_2 = sim_table + pq.ksub * pq.M;
residual_vec = sim_table_2 + pq.ksub * pq.M;
decoded_vec = residual_vec + d;
// for polysemous
polysemous_ht = ivfpq.polysemous_ht;
if (auto ivfpq_params =
dynamic_cast<const IVFPQSearchParameters*>(params)) {
polysemous_ht = ivfpq_params->polysemous_ht;
}
if (polysemous_ht != 0) {
q_code.resize(pq.code_size);
}
init_list_cycles = 0;
sim_table_ptrs.resize(pq.M);
}
/*****************************************************
* What we do when query is known
*****************************************************/
// field specific to query
const float* qi;
// query-specific initialization
void init_query(const float* qi) {
this->qi = qi;
if (metric_type == METRIC_INNER_PRODUCT)
init_query_IP();
else
init_query_L2();
if (!by_residual && polysemous_ht != 0)
pq.compute_code(qi, q_code.data());
}
void init_query_IP() {
// precompute some tables specific to the query qi
pq.compute_inner_prod_table(qi, sim_table);
}
void init_query_L2() {
if (!by_residual) {
pq.compute_distance_table(qi, sim_table);
} else if (use_precomputed_table) {
pq.compute_inner_prod_table(qi, sim_table_2);
}
}
/*****************************************************
* When inverted list is known: prepare computations
*****************************************************/
// fields specific to list
idx_t key;
float coarse_dis;
std::vector<uint8_t> q_code;
uint64_t init_list_cycles;
/// once we know the query and the centroid, we can prepare the
/// sim_table that will be used for accumulation
/// and dis0, the initial value
float precompute_list_tables() {
float dis0 = 0;
uint64_t t0;
TIC;
if (by_residual) {
if (metric_type == METRIC_INNER_PRODUCT)
dis0 = precompute_list_tables_IP();
else
dis0 = precompute_list_tables_L2();
}
init_list_cycles += TOC;
return dis0;
}
float precompute_list_table_pointers() {
float dis0 = 0;
uint64_t t0;
TIC;
if (by_residual) {
if (metric_type == METRIC_INNER_PRODUCT)
FAISS_THROW_MSG("not implemented");
else
dis0 = precompute_list_table_pointers_L2();
}
init_list_cycles += TOC;
return dis0;
}
/*****************************************************
* compute tables for inner prod
*****************************************************/
float precompute_list_tables_IP() {
// prepare the sim_table that will be used for accumulation
// and dis0, the initial value
ivfpq.quantizer->reconstruct(key, decoded_vec);
// decoded_vec = centroid
float dis0 = fvec_inner_product(qi, decoded_vec, d);
if (polysemous_ht) {
for (int i = 0; i < d; i++) {
residual_vec[i] = qi[i] - decoded_vec[i];
}
pq.compute_code(residual_vec, q_code.data());
}
return dis0;
}
/*****************************************************
* compute tables for L2 distance
*****************************************************/
float precompute_list_tables_L2() {
float dis0 = 0;
if (use_precomputed_table == 0 || use_precomputed_table == -1) {
ivfpq.quantizer->compute_residual(qi, residual_vec, key);
pq.compute_distance_table(residual_vec, sim_table);
if (polysemous_ht != 0) {
pq.compute_code(residual_vec, q_code.data());
}
} else if (use_precomputed_table == 1) {
dis0 = coarse_dis;
fvec_madd(
pq.M * pq.ksub,
ivfpq.precomputed_table.data() + key * pq.ksub * pq.M,
-2.0,
sim_table_2,
sim_table);
if (polysemous_ht != 0) {
ivfpq.quantizer->compute_residual(qi, residual_vec, key);
pq.compute_code(residual_vec, q_code.data());
}
} else if (use_precomputed_table == 2) {
dis0 = coarse_dis;
const MultiIndexQuantizer* miq =
dynamic_cast<const MultiIndexQuantizer*>(ivfpq.quantizer);
FAISS_THROW_IF_NOT(miq);
const ProductQuantizer& cpq = miq->pq;
int Mf = pq.M / cpq.M;
const float* qtab = sim_table_2; // query-specific table
float* ltab = sim_table; // (output) list-specific table
long k = key;
for (int cm = 0; cm < cpq.M; cm++) {
// compute PQ index
int ki = k & ((uint64_t(1) << cpq.nbits) - 1);
k >>= cpq.nbits;
// get corresponding table
const float* pc = ivfpq.precomputed_table.data() +
(ki * pq.M + cm * Mf) * pq.ksub;
if (polysemous_ht == 0) {
// sum up with query-specific table
fvec_madd(Mf * pq.ksub, pc, -2.0, qtab, ltab);
ltab += Mf * pq.ksub;
qtab += Mf * pq.ksub;
} else {
for (int m = cm * Mf; m < (cm + 1) * Mf; m++) {
q_code[m] = fvec_madd_and_argmin(
pq.ksub, pc, -2, qtab, ltab);
pc += pq.ksub;
ltab += pq.ksub;
qtab += pq.ksub;
}
}
}
}
return dis0;
}
float precompute_list_table_pointers_L2() {
float dis0 = 0;
if (use_precomputed_table == 1) {
dis0 = coarse_dis;
const float* s =
ivfpq.precomputed_table.data() + key * pq.ksub * pq.M;
for (int m = 0; m < pq.M; m++) {
sim_table_ptrs[m] = s;
s += pq.ksub;
}
} else if (use_precomputed_table == 2) {
dis0 = coarse_dis;
const MultiIndexQuantizer* miq =
dynamic_cast<const MultiIndexQuantizer*>(ivfpq.quantizer);
FAISS_THROW_IF_NOT(miq);
const ProductQuantizer& cpq = miq->pq;
int Mf = pq.M / cpq.M;
long k = key;
int m0 = 0;
for (int cm = 0; cm < cpq.M; cm++) {
int ki = k & ((uint64_t(1) << cpq.nbits) - 1);
k >>= cpq.nbits;
const float* pc = ivfpq.precomputed_table.data() +
(ki * pq.M + cm * Mf) * pq.ksub;
for (int m = m0; m < m0 + Mf; m++) {
sim_table_ptrs[m] = pc;
pc += pq.ksub;
}
m0 += Mf;
}
} else {
FAISS_THROW_MSG("need precomputed tables");
}
if (polysemous_ht) {
FAISS_THROW_MSG("not implemented");
// Not clear that it makes sense to implemente this,
// because it costs M * ksub, which is what we wanted to
// avoid with the tables pointers.
}
return dis0;
}
};
// This way of handling the sleector is not optimal since all distances
// are computed even if the id would filter it out.
template <class C, bool use_sel>
struct KnnSearchResults {
idx_t key;
const idx_t* ids;
const IDSelector* sel;
// heap params
size_t k;
float* heap_sim;
idx_t* heap_ids;
size_t nup;
inline bool skip_entry(idx_t j) {
return use_sel && !sel->is_member(ids[j]);
}
inline void add(idx_t j, float dis) {
if (C::cmp(heap_sim[0], dis)) {
idx_t id = ids ? ids[j] : lo_build(key, j);
heap_replace_top<C>(k, heap_sim, heap_ids, dis, id);
nup++;
}
}
};
template <class C, bool use_sel>
struct RangeSearchResults {
idx_t key;
const idx_t* ids;
const IDSelector* sel;
// wrapped result structure
float radius;
RangeQueryResult& rres;
inline bool skip_entry(idx_t j) {
return use_sel && !sel->is_member(ids[j]);
}
inline void add(idx_t j, float dis) {
if (C::cmp(radius, dis)) {
idx_t id = ids ? ids[j] : lo_build(key, j);
rres.add(dis, id);
}
}
};
/*****************************************************
* Scaning the codes.
* The scanning functions call their favorite precompute_*
* function to precompute the tables they need.
*****************************************************/
template <typename IDType, MetricType METRIC_TYPE, class PQDecoder>
struct IVFPQScannerT : QueryTables {
const uint8_t* list_codes;
const IDType* list_ids;
size_t list_size;
IVFPQScannerT(const IndexIVFPQ& ivfpq, const IVFSearchParameters* params)
: QueryTables(ivfpq, params) {
assert(METRIC_TYPE == metric_type);
}
float dis0;
void init_list(idx_t list_no, float coarse_dis, int mode) {
this->key = list_no;
this->coarse_dis = coarse_dis;
if (mode == 2) {
dis0 = precompute_list_tables();
} else if (mode == 1) {
dis0 = precompute_list_table_pointers();
}
}
/*****************************************************
* Scaning the codes: simple PQ scan.
*****************************************************/
// This is the baseline version of scan_list_with_tables().
// It demonstrates what this function actually does.
//
// /// version of the scan where we use precomputed tables.
// template <class SearchResultType>
// void scan_list_with_table(
// size_t ncode,
// const uint8_t* codes,
// SearchResultType& res) const {
//
// for (size_t j = 0; j < ncode; j++, codes += pq.code_size) {
// if (res.skip_entry(j)) {
// continue;
// }
// float dis = dis0 + distance_single_code<PQDecoder>(
// pq, sim_table, codes);
// res.add(j, dis);
// }
// }
// This is the modified version of scan_list_with_tables().
// It was observed that doing manual unrolling of the loop that
// utilizes distance_single_code() speeds up the computations.
/// version of the scan where we use precomputed tables.
template <class SearchResultType>
void scan_list_with_table(
size_t ncode,
const uint8_t* codes,
SearchResultType& res) const {
int counter = 0;
size_t saved_j[4] = {0, 0, 0, 0};
for (size_t j = 0; j < ncode; j++) {
if (res.skip_entry(j)) {
continue;
}
saved_j[0] = (counter == 0) ? j : saved_j[0];
saved_j[1] = (counter == 1) ? j : saved_j[1];
saved_j[2] = (counter == 2) ? j : saved_j[2];
saved_j[3] = (counter == 3) ? j : saved_j[3];
counter += 1;
if (counter == 4) {
float distance_0 = 0;
float distance_1 = 0;
float distance_2 = 0;
float distance_3 = 0;
distance_four_codes<PQDecoder>(
pq.M,
pq.nbits,
sim_table,
codes + saved_j[0] * pq.code_size,
codes + saved_j[1] * pq.code_size,
codes + saved_j[2] * pq.code_size,
codes + saved_j[3] * pq.code_size,
distance_0,
distance_1,
distance_2,
distance_3);
res.add(saved_j[0], dis0 + distance_0);
res.add(saved_j[1], dis0 + distance_1);
res.add(saved_j[2], dis0 + distance_2);
res.add(saved_j[3], dis0 + distance_3);
counter = 0;
}
}
if (counter >= 1) {
float dis = dis0 +
distance_single_code<PQDecoder>(
pq.M,
pq.nbits,
sim_table,
codes + saved_j[0] * pq.code_size);
res.add(saved_j[0], dis);
}
if (counter >= 2) {
float dis = dis0 +
distance_single_code<PQDecoder>(
pq.M,
pq.nbits,
sim_table,
codes + saved_j[1] * pq.code_size);
res.add(saved_j[1], dis);
}
if (counter >= 3) {
float dis = dis0 +
distance_single_code<PQDecoder>(
pq.M,
pq.nbits,
sim_table,
codes + saved_j[2] * pq.code_size);
res.add(saved_j[2], dis);
}
}
/// tables are not precomputed, but pointers are provided to the
/// relevant X_c|x_r tables
template <class SearchResultType>
void scan_list_with_pointer(
size_t ncode,
const uint8_t* codes,
SearchResultType& res) const {
for (size_t j = 0; j < ncode; j++, codes += pq.code_size) {
if (res.skip_entry(j)) {
continue;
}
PQDecoder decoder(codes, pq.nbits);
float dis = dis0;
const float* tab = sim_table_2;
for (size_t m = 0; m < pq.M; m++) {
int ci = decoder.decode();
dis += sim_table_ptrs[m][ci] - 2 * tab[ci];
tab += pq.ksub;
}
res.add(j, dis);
}
}
/// nothing is precomputed: access residuals on-the-fly
template <class SearchResultType>
void scan_on_the_fly_dist(
size_t ncode,
const uint8_t* codes,
SearchResultType& res) const {
const float* dvec;
float dis0 = 0;
if (by_residual) {
if (METRIC_TYPE == METRIC_INNER_PRODUCT) {
ivfpq.quantizer->reconstruct(key, residual_vec);
dis0 = fvec_inner_product(residual_vec, qi, d);
} else {
ivfpq.quantizer->compute_residual(qi, residual_vec, key);
}
dvec = residual_vec;
} else {
dvec = qi;
dis0 = 0;
}
for (size_t j = 0; j < ncode; j++, codes += pq.code_size) {
if (res.skip_entry(j)) {
continue;
}
pq.decode(codes, decoded_vec);
float dis;
if (METRIC_TYPE == METRIC_INNER_PRODUCT) {
dis = dis0 + fvec_inner_product(decoded_vec, qi, d);
} else {
dis = fvec_L2sqr(decoded_vec, dvec, d);
}
res.add(j, dis);
}
}
/*****************************************************
* Scanning codes with polysemous filtering
*****************************************************/
// This is the baseline version of scan_list_polysemous_hc().
// It demonstrates what this function actually does.
// template <class HammingComputer, class SearchResultType>
// void scan_list_polysemous_hc(
// size_t ncode,
// const uint8_t* codes,
// SearchResultType& res) const {
// int ht = ivfpq.polysemous_ht;
// size_t n_hamming_pass = 0, nup = 0;
//
// int code_size = pq.code_size;
//
// HammingComputer hc(q_code.data(), code_size);
//
// for (size_t j = 0; j < ncode; j++, codes += code_size) {
// if (res.skip_entry(j)) {
// continue;
// }
// const uint8_t* b_code = codes;
// int hd = hc.hamming(b_code);
// if (hd < ht) {
// n_hamming_pass++;
//
// float dis =
// dis0 +
// distance_single_code<PQDecoder>(
// pq, sim_table, codes);
//
// res.add(j, dis);
// }
// }
// #pragma omp critical
// { indexIVFPQ_stats.n_hamming_pass += n_hamming_pass; }
// }
// This is the modified version of scan_list_with_tables().
// It was observed that doing manual unrolling of the loop that
// utilizes distance_single_code() speeds up the computations.
template <class HammingComputer, class SearchResultType>
void scan_list_polysemous_hc(
size_t ncode,
const uint8_t* codes,
SearchResultType& res) const {
int ht = ivfpq.polysemous_ht;
size_t n_hamming_pass = 0, nup = 0;
int code_size = pq.code_size;
size_t saved_j[8];
int counter = 0;
HammingComputer hc(q_code.data(), code_size);
for (size_t j = 0; j < (ncode / 4) * 4; j += 4) {
const uint8_t* b_code = codes + j * code_size;
// Unrolling is a key. Basically, doing multiple popcount
// operations one after another speeds things up.
// 9999999 is just an arbitrary large number
int hd0 = (res.skip_entry(j + 0))
? 99999999
: hc.hamming(b_code + 0 * code_size);
int hd1 = (res.skip_entry(j + 1))
? 99999999
: hc.hamming(b_code + 1 * code_size);
int hd2 = (res.skip_entry(j + 2))
? 99999999
: hc.hamming(b_code + 2 * code_size);
int hd3 = (res.skip_entry(j + 3))
? 99999999
: hc.hamming(b_code + 3 * code_size);
saved_j[counter] = j + 0;
counter = (hd0 < ht) ? (counter + 1) : counter;
saved_j[counter] = j + 1;
counter = (hd1 < ht) ? (counter + 1) : counter;
saved_j[counter] = j + 2;
counter = (hd2 < ht) ? (counter + 1) : counter;
saved_j[counter] = j + 3;
counter = (hd3 < ht) ? (counter + 1) : counter;
if (counter >= 4) {
// process four codes at the same time
n_hamming_pass += 4;
float distance_0 = dis0;
float distance_1 = dis0;
float distance_2 = dis0;
float distance_3 = dis0;
distance_four_codes<PQDecoder>(
pq.M,
pq.nbits,
sim_table,
codes + saved_j[0] * pq.code_size,
codes + saved_j[1] * pq.code_size,
codes + saved_j[2] * pq.code_size,
codes + saved_j[3] * pq.code_size,
distance_0,
distance_1,
distance_2,
distance_3);
res.add(saved_j[0], dis0 + distance_0);
res.add(saved_j[1], dis0 + distance_1);
res.add(saved_j[2], dis0 + distance_2);
res.add(saved_j[3], dis0 + distance_3);
//
counter -= 4;
saved_j[0] = saved_j[4];
saved_j[1] = saved_j[5];
saved_j[2] = saved_j[6];
saved_j[3] = saved_j[7];
}
}
for (size_t kk = 0; kk < counter; kk++) {
n_hamming_pass++;
float dis = dis0 +
distance_single_code<PQDecoder>(
pq.M,
pq.nbits,
sim_table,
codes + saved_j[kk] * pq.code_size);
res.add(saved_j[kk], dis);
}
// process leftovers
for (size_t j = (ncode / 4) * 4; j < ncode; j++) {
if (res.skip_entry(j)) {
continue;
}
const uint8_t* b_code = codes + j * code_size;
int hd = hc.hamming(b_code);
if (hd < ht) {
n_hamming_pass++;
float dis = dis0 +
distance_single_code<PQDecoder>(
pq.M,
pq.nbits,
sim_table,
codes + j * code_size);
res.add(j, dis);
}
}
#pragma omp critical
{ indexIVFPQ_stats.n_hamming_pass += n_hamming_pass; }
}
template <class SearchResultType>
struct Run_scan_list_polysemous_hc {
using T = void;
template <class HammingComputer, class... Types>
void f(const IVFPQScannerT* scanner, Types... args) {
scanner->scan_list_polysemous_hc<HammingComputer, SearchResultType>(
args...);
}
};
template <class SearchResultType>
void scan_list_polysemous(
size_t ncode,
const uint8_t* codes,
SearchResultType& res) const {
Run_scan_list_polysemous_hc<SearchResultType> r;
dispatch_HammingComputer(pq.code_size, r, this, ncode, codes, res);
}
};
/* We put as many parameters as possible in template. Hopefully the
* gain in runtime is worth the code bloat.
*
* C is the comparator < or >, it is directly related to METRIC_TYPE.
*
* precompute_mode is how much we precompute (2 = precompute distance tables,
* 1 = precompute pointers to distances, 0 = compute distances one by one).
* Currently only 2 is supported
*
* use_sel: store or ignore the IDSelector
*/
template <MetricType METRIC_TYPE, class C, class PQDecoder, bool use_sel>
struct IVFPQScanner : IVFPQScannerT<idx_t, METRIC_TYPE, PQDecoder>,
InvertedListScanner {
int precompute_mode;
const IDSelector* sel;
IVFPQScanner(
const IndexIVFPQ& ivfpq,
bool store_pairs,
int precompute_mode,
const IDSelector* sel)
: IVFPQScannerT<idx_t, METRIC_TYPE, PQDecoder>(ivfpq, nullptr),
precompute_mode(precompute_mode),
sel(sel) {
this->store_pairs = store_pairs;
}
void set_query(const float* query) override {
this->init_query(query);
}
void set_list(idx_t list_no, float coarse_dis) override {
this->list_no = list_no;
this->init_list(list_no, coarse_dis, precompute_mode);
}
float distance_to_code(const uint8_t* code) const override {
assert(precompute_mode == 2);
float dis = this->dis0 +
distance_single_code<PQDecoder>(
this->pq.M, this->pq.nbits, this->sim_table, code);
return dis;
}
size_t scan_codes(
size_t ncode,
const uint8_t* codes,
const idx_t* ids,
float* heap_sim,
idx_t* heap_ids,
size_t k) const override {
KnnSearchResults<C, use_sel> res = {
/* key */ this->key,
/* ids */ this->store_pairs ? nullptr : ids,
/* sel */ this->sel,
/* k */ k,
/* heap_sim */ heap_sim,
/* heap_ids */ heap_ids,
/* nup */ 0};
if (this->polysemous_ht > 0) {
assert(precompute_mode == 2);
this->scan_list_polysemous(ncode, codes, res);
} else if (precompute_mode == 2) {
this->scan_list_with_table(ncode, codes, res);
} else if (precompute_mode == 1) {
this->scan_list_with_pointer(ncode, codes, res);
} else if (precompute_mode == 0) {
this->scan_on_the_fly_dist(ncode, codes, res);
} else {
FAISS_THROW_MSG("bad precomp mode");
}
return res.nup;
}
void scan_codes_range(
size_t ncode,
const uint8_t* codes,
const idx_t* ids,
float radius,
RangeQueryResult& rres) const override {
RangeSearchResults<C, use_sel> res = {
/* key */ this->key,
/* ids */ this->store_pairs ? nullptr : ids,
/* sel */ this->sel,
/* radius */ radius,
/* rres */ rres};
if (this->polysemous_ht > 0) {
assert(precompute_mode == 2);
this->scan_list_polysemous(ncode, codes, res);
} else if (precompute_mode == 2) {
this->scan_list_with_table(ncode, codes, res);
} else if (precompute_mode == 1) {
this->scan_list_with_pointer(ncode, codes, res);
} else if (precompute_mode == 0) {
this->scan_on_the_fly_dist(ncode, codes, res);
} else {
FAISS_THROW_MSG("bad precomp mode");
}
}
};
template <class PQDecoder, bool use_sel>
InvertedListScanner* get_InvertedListScanner1(
const IndexIVFPQ& index,
bool store_pairs,
const IDSelector* sel) {
if (index.metric_type == METRIC_INNER_PRODUCT) {
return new IVFPQScanner<
METRIC_INNER_PRODUCT,
CMin<float, idx_t>,
PQDecoder,
use_sel>(index, store_pairs, 2, sel);
} else if (index.metric_type == METRIC_L2) {
return new IVFPQScanner<
METRIC_L2,
CMax<float, idx_t>,
PQDecoder,
use_sel>(index, store_pairs, 2, sel);
}
return nullptr;
}
template <bool use_sel>
InvertedListScanner* get_InvertedListScanner2(
const IndexIVFPQ& index,
bool store_pairs,
const IDSelector* sel) {
if (index.pq.nbits == 8) {
return get_InvertedListScanner1<PQDecoder8, use_sel>(
index, store_pairs, sel);
} else if (index.pq.nbits == 16) {
return get_InvertedListScanner1<PQDecoder16, use_sel>(
index, store_pairs, sel);
} else {
return get_InvertedListScanner1<PQDecoderGeneric, use_sel>(
index, store_pairs, sel);
}
}
} // anonymous namespace
InvertedListScanner* IndexIVFPQ::get_InvertedListScanner(
bool store_pairs,
const IDSelector* sel) const {
if (sel) {
return get_InvertedListScanner2<true>(*this, store_pairs, sel);
} else {
return get_InvertedListScanner2<false>(*this, store_pairs, sel);
}
return nullptr;
}
IndexIVFPQStats indexIVFPQ_stats;
void IndexIVFPQStats::reset() {
memset(this, 0, sizeof(*this));
}
IndexIVFPQ::IndexIVFPQ() {
// initialize some runtime values
use_precomputed_table = 0;
scan_table_threshold = 0;
do_polysemous_training = false;
polysemous_ht = 0;
polysemous_training = nullptr;
}
struct CodeCmp {
const uint8_t* tab;
size_t code_size;
bool operator()(int a, int b) const {
return cmp(a, b) > 0;
}
int cmp(int a, int b) const {
return memcmp(tab + a * code_size, tab + b * code_size, code_size);
}
};
size_t IndexIVFPQ::find_duplicates(idx_t* dup_ids, size_t* lims) const {
size_t ngroup = 0;
lims[0] = 0;
for (size_t list_no = 0; list_no < nlist; list_no++) {
size_t n = invlists->list_size(list_no);
std::vector<int> ord(n);
for (int i = 0; i < n; i++)
ord[i] = i;
InvertedLists::ScopedCodes codes(invlists, list_no);
CodeCmp cs = {codes.get(), code_size};
std::sort(ord.begin(), ord.end(), cs);
InvertedLists::ScopedIds list_ids(invlists, list_no);
int prev = -1; // all elements from prev to i-1 are equal
for (int i = 0; i < n; i++) {
if (prev >= 0 && cs.cmp(ord[prev], ord[i]) == 0) {
// same as previous => remember
if (prev + 1 == i) { // start new group
ngroup++;
lims[ngroup] = lims[ngroup - 1];
dup_ids[lims[ngroup]++] = list_ids[ord[prev]];
}
dup_ids[lims[ngroup]++] = list_ids[ord[i]];
} else { // not same as previous.
prev = i;
}
}
}
return ngroup;
}
} // namespace faiss