faiss/gpu/perf/PerfBinaryFlat.cu

127 lines
3.6 KiB
Plaintext

/**
* Copyright (c) 2015-present, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under the BSD+Patents license found in the
* LICENSE file in the root directory of this source tree.
*/
#include "../../IndexBinaryFlat.h"
#include "../../utils.h"
#include "../GpuIndexBinaryFlat.h"
#include "../StandardGpuResources.h"
#include "../test/TestUtils.h"
#include "../utils/DeviceTensor.cuh"
#include "../utils/DeviceUtils.h"
#include "../utils/HostTensor.cuh"
#include "../utils/Timer.h"
#include <gflags/gflags.h>
#include <map>
#include <memory>
#include <vector>
#include <cuda_profiler_api.h>
DEFINE_int32(k, 3, "final number of closest results returned");
DEFINE_int32(num, 128, "# of vecs");
DEFINE_int32(dim, 128, "# of dimensions");
DEFINE_int32(num_queries, 3, "number of query vectors");
DEFINE_int64(seed, -1, "specify random seed");
DEFINE_int64(pinned_mem, 0, "pinned memory allocation to use");
DEFINE_bool(cpu, true, "run the CPU code for timing and comparison");
DEFINE_bool(use_unified_mem, false, "use Pascal unified memory for the index");
using namespace faiss::gpu;
int main(int argc, char** argv) {
gflags::ParseCommandLineFlags(&argc, &argv, true);
cudaProfilerStop();
auto seed = FLAGS_seed != -1L ? FLAGS_seed : time(nullptr);
printf("using seed %ld\n", seed);
auto numQueries = FLAGS_num_queries;
auto index = std::unique_ptr<faiss::IndexBinaryFlat>(
new faiss::IndexBinaryFlat(FLAGS_dim));
HostTensor<unsigned char, 2, true> vecs({FLAGS_num, FLAGS_dim / 8});
faiss::byte_rand(vecs.data(), vecs.numElements(), seed);
index->add(FLAGS_num, vecs.data());
printf("Database: dim %d num vecs %d\n", FLAGS_dim, FLAGS_num);
printf("Hamming lookup: %d queries, total k %d\n",
numQueries, FLAGS_k);
// Convert to GPU index
printf("Copying index to GPU...\n");
GpuIndexBinaryFlatConfig config;
config.memorySpace = FLAGS_use_unified_mem ?
MemorySpace::Unified : MemorySpace::Device;
faiss::gpu::StandardGpuResources res;
faiss::gpu::GpuIndexBinaryFlat gpuIndex(&res,
index.get(),
config);
printf("copy done\n");
// Build query vectors
HostTensor<unsigned char, 2, true> cpuQuery({numQueries, FLAGS_dim / 8});
faiss::byte_rand(cpuQuery.data(), cpuQuery.numElements(), seed);
// Time faiss CPU
HostTensor<int, 2, true>
cpuDistances({numQueries, FLAGS_k});
HostTensor<faiss::IndexBinary::idx_t, 2, true>
cpuIndices({numQueries, FLAGS_k});
if (FLAGS_cpu) {
float cpuTime = 0.0f;
CpuTimer timer;
index->search(numQueries,
cpuQuery.data(),
FLAGS_k,
cpuDistances.data(),
cpuIndices.data());
cpuTime = timer.elapsedMilliseconds();
printf("CPU time %.3f ms\n", cpuTime);
}
HostTensor<int, 2, true> gpuDistances({numQueries, FLAGS_k});
HostTensor<faiss::Index::idx_t, 2, true> gpuIndices({numQueries, FLAGS_k});
CUDA_VERIFY(cudaProfilerStart());
faiss::gpu::synchronizeAllDevices();
float gpuTime = 0.0f;
// Time GPU
{
CpuTimer timer;
gpuIndex.search(cpuQuery.getSize(0),
cpuQuery.data(),
FLAGS_k,
gpuDistances.data(),
gpuIndices.data());
// There is a device -> host copy above, so no need to time
// additional synchronization with the GPU
gpuTime = timer.elapsedMilliseconds();
}
CUDA_VERIFY(cudaProfilerStop());
printf("GPU time %.3f ms\n", gpuTime);
CUDA_VERIFY(cudaDeviceSynchronize());
return 0;
}