mirror of
https://github.com/facebookresearch/faiss.git
synced 2025-06-03 14:30:22 +08:00
Changelog: - changed license: BSD+Patents -> MIT - propagates exceptions raised in sub-indexes of IndexShards and IndexReplicas - support for searching several inverted lists in parallel (parallel_mode != 0) - better support for PQ codes where nbit != 8 or 16 - IVFSpectralHash implementation: spectral hash codes inside an IVF - 6-bit per component scalar quantizer (4 and 8 bit were already supported) - combinations of inverted lists: HStackInvertedLists and VStackInvertedLists - configurable number of threads for OnDiskInvertedLists prefetching (including 0=no prefetch) - more test and demo code compatible with Python 3 (print with parentheses) - refactored benchmark code: data loading is now in a single file
114 lines
4.2 KiB
Plaintext
114 lines
4.2 KiB
Plaintext
/**
|
|
* Copyright (c) Facebook, Inc. and its affiliates.
|
|
*
|
|
* This source code is licensed under the MIT license found in the
|
|
* LICENSE file in the root directory of this source tree.
|
|
*/
|
|
|
|
|
|
#include "GpuDistance.h"
|
|
#include "../FaissAssert.h"
|
|
#include "GpuResources.h"
|
|
#include "impl/Distance.cuh"
|
|
#include "utils/ConversionOperators.cuh"
|
|
#include "utils/CopyUtils.cuh"
|
|
#include "utils/DeviceUtils.h"
|
|
#include "utils/DeviceTensor.cuh"
|
|
|
|
#include <thrust/execution_policy.h>
|
|
#include <thrust/transform.h>
|
|
|
|
namespace faiss { namespace gpu {
|
|
|
|
void bruteForceKnn(GpuResources* resources,
|
|
faiss::MetricType metric,
|
|
// A region of memory size numVectors x dims, with dims
|
|
// innermost
|
|
const float* vectors,
|
|
bool vectorsRowMajor,
|
|
int numVectors,
|
|
// A region of memory size numQueries x dims, with dims
|
|
// innermost
|
|
const float* queries,
|
|
bool queriesRowMajor,
|
|
int numQueries,
|
|
int dims,
|
|
int k,
|
|
// A region of memory size numQueries x k, with k
|
|
// innermost
|
|
float* outDistances,
|
|
// A region of memory size numQueries x k, with k
|
|
// innermost
|
|
faiss::Index::idx_t* outIndices) {
|
|
auto device = getCurrentDevice();
|
|
auto stream = resources->getDefaultStreamCurrentDevice();
|
|
auto& mem = resources->getMemoryManagerCurrentDevice();
|
|
|
|
auto tVectors = toDevice<float, 2>(resources,
|
|
device,
|
|
const_cast<float*>(vectors),
|
|
stream,
|
|
{vectorsRowMajor ? numVectors : dims,
|
|
vectorsRowMajor ? dims : numVectors});
|
|
auto tQueries = toDevice<float, 2>(resources,
|
|
device,
|
|
const_cast<float*>(queries),
|
|
stream,
|
|
{queriesRowMajor ? numQueries : dims,
|
|
queriesRowMajor ? dims : numQueries});
|
|
|
|
auto tOutDistances = toDevice<float, 2>(resources,
|
|
device,
|
|
outDistances,
|
|
stream,
|
|
{numQueries, k});
|
|
|
|
// FlatIndex only supports an interface returning int indices, allocate
|
|
// temporary memory for it
|
|
DeviceTensor<int, 2, true> tOutIntIndices(mem, {numQueries, k}, stream);
|
|
|
|
// Do the work
|
|
if (metric == faiss::MetricType::METRIC_L2) {
|
|
runL2Distance(resources,
|
|
tVectors,
|
|
vectorsRowMajor,
|
|
nullptr, // compute norms in temp memory
|
|
tQueries,
|
|
queriesRowMajor,
|
|
k,
|
|
tOutDistances,
|
|
tOutIntIndices);
|
|
} else if (metric == faiss::MetricType::METRIC_INNER_PRODUCT) {
|
|
runIPDistance(resources,
|
|
tVectors,
|
|
vectorsRowMajor,
|
|
tQueries,
|
|
queriesRowMajor,
|
|
k,
|
|
tOutDistances,
|
|
tOutIntIndices);
|
|
} else {
|
|
FAISS_THROW_MSG("metric should be METRIC_L2 or METRIC_INNER_PRODUCT");
|
|
}
|
|
|
|
// Convert and copy int indices out
|
|
auto tOutIndices = toDevice<faiss::Index::idx_t, 2>(resources,
|
|
device,
|
|
outIndices,
|
|
stream,
|
|
{numQueries, k});
|
|
|
|
// Convert int to idx_t
|
|
thrust::transform(thrust::cuda::par.on(stream),
|
|
tOutIntIndices.data(),
|
|
tOutIntIndices.end(),
|
|
tOutIndices.data(),
|
|
IntToIdxType());
|
|
|
|
// Copy back if necessary
|
|
fromDevice<float, 2>(tOutDistances, outDistances, stream);
|
|
fromDevice<faiss::Index::idx_t, 2>(tOutIndices, outIndices, stream);
|
|
}
|
|
|
|
} } // namespace
|