mirror of
https://github.com/facebookresearch/faiss.git
synced 2025-06-03 21:54:02 +08:00
Summary: Pull Request resolved: https://github.com/facebookresearch/faiss/pull/3989 Moved add_sa_codes, sa_code_size to Index, IndexBinary base classes from IndexIVF to support adding coded vectors with ids using IDMap2,PQ For an alternative approach, see previous attempt with merge_ids and merge_codes: D64941798 Reviewed By: mnorris11 Differential Revision: D64972587 fbshipit-source-id: 71622fc35a378d9892569a56442a872f0c9c9e83
90 lines
2.3 KiB
Python
90 lines
2.3 KiB
Python
#!/usr/bin/env -S grimaldi --kernel faiss_binary_local
|
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
#
|
|
# This source code is licensed under the MIT license found in the
|
|
# LICENSE file in the root directory of this source tree.
|
|
|
|
# fmt: off
|
|
# flake8: noqa
|
|
|
|
|
|
""":md
|
|
# IndexPQ: separate codes from codebook
|
|
|
|
This notebook demonstrates how to separate serializing and deserializing the PQ codebook
|
|
(via faiss.write_index for IndexPQ) independently of the vector codes. For example, in the case
|
|
where you have a few vector embeddings per user and want to shard the flat index by user you
|
|
can re-use the same PQ method for all users but store each user's codes independently.
|
|
|
|
"""
|
|
|
|
""":py"""
|
|
import faiss
|
|
import numpy as np
|
|
|
|
""":py"""
|
|
d = 768
|
|
n = 10000
|
|
ids = np.arange(n).astype('int64')
|
|
training_data = np.random.rand(n, d).astype('float32')
|
|
M = d//8
|
|
nbits = 8
|
|
|
|
""":py"""
|
|
def read_ids_codes():
|
|
try:
|
|
return np.load("/tmp/ids.npy"), np.load("/tmp/codes.npy")
|
|
except FileNotFoundError:
|
|
return None, None
|
|
|
|
|
|
def write_ids_codes(ids, codes):
|
|
np.save("/tmp/ids.npy", ids)
|
|
np.save("/tmp/codes.npy", codes.reshape(len(ids), -1))
|
|
|
|
|
|
def write_template_index(template_index):
|
|
faiss.write_index(template_index, "/tmp/template.index")
|
|
|
|
|
|
def read_template_index_instance():
|
|
return faiss.read_index("/tmp/template.index")
|
|
|
|
""":py"""
|
|
# at train time
|
|
|
|
template_index = faiss.index_factory(d, f"IDMap2,PQ{M}x{nbits}")
|
|
template_index.train(training_data)
|
|
write_template_index(template_index)
|
|
|
|
""":py"""
|
|
# New database vector
|
|
|
|
index = read_template_index_instance()
|
|
database_vector_id, database_vector_float32 = np.random.randint(10000), np.random.rand(1, d).astype(np.float32)
|
|
ids, codes = read_ids_codes()
|
|
|
|
code = index.index.sa_encode(database_vector_float32)
|
|
|
|
if ids is not None and codes is not None:
|
|
ids = np.concatenate((ids, [database_vector_id]))
|
|
codes = np.vstack((codes, code))
|
|
else:
|
|
ids = np.array([database_vector_id])
|
|
codes = np.array([code])
|
|
|
|
write_ids_codes(ids, codes)
|
|
|
|
""":py '331546060044009'"""
|
|
# then at query time
|
|
query_vector_float32 = np.random.rand(1, d).astype(np.float32)
|
|
id_wrapper_index = read_template_index_instance()
|
|
ids, codes = read_ids_codes()
|
|
|
|
id_wrapper_index.add_sa_codes(codes, ids)
|
|
|
|
id_wrapper_index.search(query_vector_float32, k=5)
|
|
|
|
""":py"""
|
|
!rm /tmp/ids.npy /tmp/codes.npy /tmp/template.index
|