1
0
mirror of https://github.com/facebookresearch/faiss.git synced 2025-06-03 07:50:07 +08:00
Lucas Hosseini a8118acbc5
Facebook sync (May 2019) + relicense ()
Changelog:

- changed license: BSD+Patents -> MIT
- propagates exceptions raised in sub-indexes of IndexShards and IndexReplicas
- support for searching several inverted lists in parallel (parallel_mode != 0)
- better support for PQ codes where nbit != 8 or 16
- IVFSpectralHash implementation: spectral hash codes inside an IVF
- 6-bit per component scalar quantizer (4 and 8 bit were already supported)
- combinations of inverted lists: HStackInvertedLists and VStackInvertedLists
- configurable number of threads for OnDiskInvertedLists prefetching (including 0=no prefetch)
- more test and demo code compatible with Python 3 (print with parentheses)
- refactored benchmark code: data loading is now in a single file
2019-05-28 16:17:22 +02:00

58 lines
1.9 KiB
Python

# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import numpy as np
d = 64 # dimension
nb = 100000 # database size
nq = 10000 # nb of queries
np.random.seed(1234) # make reproducible
xb = np.random.random((nb, d)).astype('float32')
xb[:, 0] += np.arange(nb) / 1000.
xq = np.random.random((nq, d)).astype('float32')
xq[:, 0] += np.arange(nq) / 1000.
import faiss # make faiss available
res = faiss.StandardGpuResources() # use a single GPU
## Using a flat index
index_flat = faiss.IndexFlatL2(d) # build a flat (CPU) index
# make it a flat GPU index
gpu_index_flat = faiss.index_cpu_to_gpu(res, 0, index_flat)
gpu_index_flat.add(xb) # add vectors to the index
print(gpu_index_flat.ntotal)
k = 4 # we want to see 4 nearest neighbors
D, I = gpu_index_flat.search(xq, k) # actual search
print(I[:5]) # neighbors of the 5 first queries
print(I[-5:]) # neighbors of the 5 last queries
## Using an IVF index
nlist = 100
quantizer = faiss.IndexFlatL2(d) # the other index
index_ivf = faiss.IndexIVFFlat(quantizer, d, nlist, faiss.METRIC_L2)
# here we specify METRIC_L2, by default it performs inner-product search
# make it an IVF GPU index
gpu_index_ivf = faiss.index_cpu_to_gpu(res, 0, index_ivf)
assert not gpu_index_ivf.is_trained
gpu_index_ivf.train(xb) # add vectors to the index
assert gpu_index_ivf.is_trained
gpu_index_ivf.add(xb) # add vectors to the index
print(gpu_index_ivf.ntotal)
k = 4 # we want to see 4 nearest neighbors
D, I = gpu_index_ivf.search(xq, k) # actual search
print(I[:5]) # neighbors of the 5 first queries
print(I[-5:]) # neighbors of the 5 last queries