faiss/tests/test_partition.py
Matthijs Douze b9ea339617 support range search from GPU (#2860)
Summary:
Pull Request resolved: https://github.com/facebookresearch/faiss/pull/2860

Optimized range search function where the GPU computes by default and falls back on gpu for queries where there are too many results.

Parallelize the CPU to GPU cloning, it seems to work.

Support range_search_preassigned in Python

Fix long-standing issue with SWIG exposed functions that did not release the GIL (in particular the MapLong2Long).

Adds a MapInt64ToInt64 that is more efficient than MapLong2Long.

Reviewed By: algoriddle

Differential Revision: D45672301

fbshipit-source-id: 2e77397c40083818584dbafa5427149359a2abfd
2023-05-16 00:27:53 -07:00

350 lines
10 KiB
Python

# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import numpy as np
import faiss
import unittest
class PartitionTests:
def test_partition(self):
self.do_partition(160, 80)
def test_partition_manydups(self):
self.do_partition(160, 80, maxval=16)
def test_partition_lowq(self):
self.do_partition(160, 10, maxval=16)
def test_partition_highq(self):
self.do_partition(165, 155, maxval=16)
def test_partition_q10(self):
self.do_partition(32, 10, maxval=500)
def test_partition_q10_dups(self):
self.do_partition(32, 10, maxval=16)
def test_partition_q10_fuzzy(self):
self.do_partition(32, (10, 15), maxval=500)
def test_partition_fuzzy(self):
self.do_partition(160, (70, 80), maxval=500)
def test_partition_fuzzy_2(self):
self.do_partition(160, (70, 80))
def pointer_to_minus1():
return np.array([-1], dtype='int64').view("uint64")
class TestPartitioningFloat(unittest.TestCase, PartitionTests):
def do_partition(self, n, q, maxval=None, seed=None):
if seed is None:
for i in range(50):
self.do_partition(n, q, maxval, i + 1234)
# print("seed=", seed)
rs = np.random.RandomState(seed)
if maxval is None:
vals = rs.rand(n).astype('float32')
else:
vals = rs.randint(maxval, size=n).astype('float32')
ids = (rs.permutation(n) + 12345).astype('int64')
dic = dict(zip(ids, vals))
vals_orig = vals.copy()
sp = faiss.swig_ptr
if type(q) == int:
faiss.CMax_float_partition_fuzzy(
sp(vals), sp(ids), n,
q, q, None
)
else:
q_min, q_max = q
q = pointer_to_minus1()
faiss.CMax_float_partition_fuzzy(
sp(vals), sp(ids), n,
q_min, q_max, sp(q)
)
q = q[0]
assert q_min <= q <= q_max
o = vals_orig.argsort()
thresh = vals_orig[o[q]]
n_eq = (vals_orig[o[:q]] == thresh).sum()
for i in range(q):
self.assertEqual(vals[i], dic[ids[i]])
self.assertLessEqual(vals[i], thresh)
if vals[i] == thresh:
n_eq -= 1
self.assertEqual(n_eq, 0)
class TestPartitioningFloatMin(unittest.TestCase, PartitionTests):
def do_partition(self, n, q, maxval=None, seed=None):
if seed is None:
for i in range(50):
self.do_partition(n, q, maxval, i + 1234)
# print("seed=", seed)
rs = np.random.RandomState(seed)
if maxval is None:
vals = rs.rand(n).astype('float32')
mirval = 1.0
else:
vals = rs.randint(maxval, size=n).astype('float32')
mirval = 65536
ids = (rs.permutation(n) + 12345).astype('int64')
dic = dict(zip(ids, vals))
vals_orig = vals.copy()
vals[:] = mirval - vals
sp = faiss.swig_ptr
if type(q) == int:
faiss.CMin_float_partition_fuzzy(
sp(vals), sp(ids), n,
q, q, None
)
else:
q_min, q_max = q
q = pointer_to_minus1()
faiss.CMin_float_partition_fuzzy(
sp(vals), sp(ids), n,
q_min, q_max, sp(q)
)
q = q[0]
assert q_min <= q <= q_max
vals[:] = mirval - vals
o = vals_orig.argsort()
thresh = vals_orig[o[q]]
n_eq = (vals_orig[o[:q]] == thresh).sum()
for i in range(q):
np.testing.assert_almost_equal(vals[i], dic[ids[i]], decimal=5)
self.assertLessEqual(vals[i], thresh)
if vals[i] == thresh:
n_eq -= 1
self.assertEqual(n_eq, 0)
class TestPartitioningUint16(unittest.TestCase, PartitionTests):
def do_partition(self, n, q, maxval=65536, seed=None):
if seed is None:
for i in range(50):
self.do_partition(n, q, maxval, i + 1234)
# print("seed=", seed)
rs = np.random.RandomState(seed)
vals = rs.randint(maxval, size=n).astype('uint16')
ids = (rs.permutation(n) + 12345).astype('int64')
dic = dict(zip(ids, vals))
sp = faiss.swig_ptr
vals_orig = vals.copy()
tab_a = faiss.AlignedTableUint16()
faiss.copy_array_to_AlignedTable(vals, tab_a)
# print("tab a type", tab_a.get())
if type(q) == int:
faiss.CMax_uint16_partition_fuzzy(
tab_a.get(), sp(ids), n, q, q, None)
else:
q_min, q_max = q
q = pointer_to_minus1()
faiss.CMax_uint16_partition_fuzzy(
tab_a.get(), sp(ids), n,
q_min, q_max, sp(q)
)
q = q[0]
assert q_min <= q <= q_max
vals = faiss.AlignedTable_to_array(tab_a)
o = vals_orig.argsort()
thresh = vals_orig[o[q]]
n_eq = (vals_orig[o[:q]] == thresh).sum()
for i in range(q):
self.assertEqual(vals[i], dic[ids[i]])
self.assertLessEqual(vals[i], thresh)
if vals[i] == thresh:
n_eq -= 1
self.assertEqual(n_eq, 0)
class TestPartitioningUint16Min(unittest.TestCase, PartitionTests):
def do_partition(self, n, q, maxval=65536, seed=None):
#seed = 1235
if seed is None:
for i in range(50):
self.do_partition(n, q, maxval, i + 1234)
# print("seed=", seed)
rs = np.random.RandomState(seed)
vals = rs.randint(maxval, size=n).astype('uint16')
ids = (rs.permutation(n) + 12345).astype('int64')
dic = dict(zip(ids, vals))
sp = faiss.swig_ptr
vals_orig = vals.copy()
tab_a = faiss.AlignedTableUint16()
vals_inv = (65535 - vals).astype('uint16')
faiss.copy_array_to_AlignedTable(vals_inv, tab_a)
# print("tab a type", tab_a.get())
if type(q) == int:
faiss.CMin_uint16_partition_fuzzy(
tab_a.get(), sp(ids), n, q, q, None)
else:
q_min, q_max = q
q = pointer_to_minus1()
thresh2 = faiss.CMin_uint16_partition_fuzzy(
tab_a.get(), sp(ids), n,
q_min, q_max, sp(q)
)
q = q[0]
assert q_min <= q <= q_max
vals_inv = faiss.AlignedTable_to_array(tab_a)
vals = 65535 - vals_inv
o = vals_orig.argsort()
thresh = vals_orig[o[q]]
n_eq = (vals_orig[o[:q]] == thresh).sum()
for i in range(q):
self.assertEqual(vals[i], dic[ids[i]])
self.assertLessEqual(vals[i], thresh)
if vals[i] == thresh:
n_eq -= 1
self.assertEqual(n_eq, 0)
class TestHistograms(unittest.TestCase):
def do_test(self, nbin, n):
rs = np.random.RandomState(123)
tab = rs.randint(nbin, size=n).astype('uint16')
ref_histogram = np.bincount(tab, minlength=nbin)
tab_a = faiss.AlignedTableUint16()
faiss.copy_array_to_AlignedTable(tab, tab_a)
sp = faiss.swig_ptr
hist = np.zeros(nbin, 'int32')
if nbin == 8:
faiss.simd_histogram_8(tab_a.get(), n, 0, -1, sp(hist))
elif nbin == 16:
faiss.simd_histogram_16(tab_a.get(), n, 0, -1, sp(hist))
else:
raise AssertionError()
np.testing.assert_array_equal(hist, ref_histogram)
def test_8bin_even(self):
self.do_test(8, 5 * 16)
def test_8bin_odd(self):
self.do_test(8, 123)
def test_16bin_even(self):
self.do_test(16, 5 * 16)
def test_16bin_odd(self):
self.do_test(16, 123)
def do_test_bounded(self, nbin, n, shift=2, minv=500, rspan=None, seed=None):
if seed is None:
for run in range(50):
self.do_test_bounded(nbin, n, shift, minv, rspan, seed=123 + run)
return
if rspan is None:
rmin, rmax = 0, nbin * 6
else:
rmin, rmax = rspan
rs = np.random.RandomState(seed)
tab = rs.randint(rmin, rmax, size=n).astype('uint16')
bc = np.bincount(tab, minlength=65536)
binsize = 1 << shift
ref_histogram = bc[minv : minv + binsize * nbin]
def pad_and_reshape(x, m, n):
xout = np.zeros(m * n, dtype=x.dtype)
xout[:x.size] = x
return xout.reshape(m, n)
ref_histogram = pad_and_reshape(ref_histogram, nbin, binsize)
ref_histogram = ref_histogram.sum(1)
tab_a = faiss.AlignedTableUint16()
faiss.copy_array_to_AlignedTable(tab, tab_a)
sp = faiss.swig_ptr
hist = np.zeros(nbin, 'int32')
if nbin == 8:
faiss.simd_histogram_8(
tab_a.get(), n, minv, shift, sp(hist)
)
elif nbin == 16:
faiss.simd_histogram_16(
tab_a.get(), n, minv, shift, sp(hist)
)
else:
raise AssertionError()
np.testing.assert_array_equal(hist, ref_histogram)
def test_8bin_even_bounded(self):
self.do_test_bounded(8, 22 * 16)
def test_8bin_odd_bounded(self):
self.do_test_bounded(8, 10000)
def test_16bin_even_bounded(self):
self.do_test_bounded(16, 22 * 16)
def test_16bin_odd_bounded(self):
self.do_test_bounded(16, 10000)
def test_16bin_bounded_bigrange(self):
self.do_test_bounded(16, 1000, shift=12, rspan=(10, 65500))
def test_8bin_bounded_bigrange(self):
self.do_test_bounded(8, 1000, shift=13, rspan=(10, 65500))
def test_16bin_bounded_bigrange_2(self):
self.do_test_bounded(16, 10, shift=12, rspan=(65000, 65500))
def test_16bin_bounded_shift0(self):
self.do_test_bounded(16, 10000, shift=0, rspan=(10, 65500))
def test_8bin_bounded_shift0(self):
self.do_test_bounded(8, 10000, shift=0, rspan=(10, 65500))
def test_16bin_bounded_ignore_out_range(self):
self.do_test_bounded(16, 10000, shift=5, rspan=(100, 20000), minv=300)
def test_8bin_bounded_ignore_out_range(self):
self.do_test_bounded(8, 10000, shift=5, rspan=(100, 20000), minv=300)