105 lines
2.9 KiB
Python
105 lines
2.9 KiB
Python
# Copyright (c) Facebook, Inc. and its affiliates.
|
|
#
|
|
# This source code is licensed under the MIT license found in the
|
|
# LICENSE file in the root directory of this source tree.
|
|
|
|
import faiss
|
|
import unittest
|
|
import numpy as np
|
|
import platform
|
|
|
|
from faiss.contrib import datasets
|
|
|
|
from common import get_dataset_2
|
|
try:
|
|
from faiss.contrib.exhaustive_search import knn_ground_truth, knn
|
|
|
|
except:
|
|
pass # Submodule import broken in python 2.
|
|
|
|
@unittest.skipIf(platform.python_version_tuple()[0] < '3', \
|
|
'Submodule import broken in python 2.')
|
|
class TestComputeGT(unittest.TestCase):
|
|
|
|
def test_compute_GT(self):
|
|
d = 64
|
|
xt, xb, xq = get_dataset_2(d, 0, 10000, 100)
|
|
|
|
index = faiss.IndexFlatL2(d)
|
|
index.add(xb)
|
|
Dref, Iref = index.search(xq, 10)
|
|
|
|
# iterator function on the matrix
|
|
|
|
def matrix_iterator(xb, bs):
|
|
for i0 in range(0, xb.shape[0], bs):
|
|
yield xb[i0:i0 + bs]
|
|
|
|
Dnew, Inew = knn_ground_truth(xq, matrix_iterator(xb, 1000), 10)
|
|
|
|
np.testing.assert_array_equal(Iref, Inew)
|
|
# decimal = 4 required when run on GPU
|
|
np.testing.assert_almost_equal(Dref, Dnew, decimal=4)
|
|
|
|
|
|
class TestDatasets(unittest.TestCase):
|
|
"""here we test only the synthetic dataset. Datasets that require
|
|
disk or manifold access are in
|
|
//deeplearning/projects/faiss-forge/test_faiss_datasets/:test_faiss_datasets
|
|
"""
|
|
|
|
def test_synthetic(self):
|
|
ds = datasets.SyntheticDataset(32, 1000, 2000, 10)
|
|
xq = ds.get_queries()
|
|
self.assertEqual(xq.shape, (10, 32))
|
|
xb = ds.get_database()
|
|
self.assertEqual(xb.shape, (2000, 32))
|
|
ds.check_sizes()
|
|
|
|
def test_synthetic_ip(self):
|
|
ds = datasets.SyntheticDataset(32, 1000, 2000, 10, "IP")
|
|
index = faiss.IndexFlatIP(32)
|
|
index.add(ds.get_database())
|
|
np.testing.assert_array_equal(
|
|
ds.get_groundtruth(100),
|
|
index.search(ds.get_queries(), 100)[1]
|
|
)
|
|
|
|
|
|
def test_synthetic_iterator(self):
|
|
ds = datasets.SyntheticDataset(32, 1000, 2000, 10)
|
|
xb = ds.get_database()
|
|
xb2 = []
|
|
for xbi in ds.database_iterator():
|
|
xb2.append(xbi)
|
|
xb2 = np.vstack(xb2)
|
|
np.testing.assert_array_equal(xb, xb2)
|
|
|
|
|
|
class TestExhaustiveSearch(unittest.TestCase):
|
|
|
|
def test_knn_cpu(self):
|
|
|
|
xb = np.random.rand(200, 32).astype('float32')
|
|
xq = np.random.rand(100, 32).astype('float32')
|
|
|
|
|
|
index = faiss.IndexFlatL2(32)
|
|
index.add(xb)
|
|
Dref, Iref = index.search(xq, 10)
|
|
|
|
Dnew, Inew = knn(xq, xb, 10)
|
|
|
|
assert np.all(Inew == Iref)
|
|
assert np.allclose(Dref, Dnew)
|
|
|
|
|
|
index = faiss.IndexFlatIP(32)
|
|
index.add(xb)
|
|
Dref, Iref = index.search(xq, 10)
|
|
|
|
Dnew, Inew = knn(xq, xb, 10, distance_type=faiss.METRIC_INNER_PRODUCT)
|
|
|
|
assert np.all(Inew == Iref)
|
|
assert np.allclose(Dref, Dnew)
|