1231 lines
36 KiB
C++
1231 lines
36 KiB
C++
/**
|
|
* Copyright (c) Facebook, Inc. and its affiliates.
|
|
*
|
|
* This source code is licensed under the MIT license found in the
|
|
* LICENSE file in the root directory of this source tree.
|
|
*/
|
|
|
|
// -*- c++ -*-
|
|
|
|
#include <faiss/IndexIVFPQ.h>
|
|
|
|
#include <cmath>
|
|
#include <cstdio>
|
|
#include <cassert>
|
|
#include <stdint.h>
|
|
|
|
#include <algorithm>
|
|
|
|
#include <faiss/utils/Heap.h>
|
|
#include <faiss/utils/utils.h>
|
|
#include <faiss/utils/distances.h>
|
|
|
|
#include <faiss/Clustering.h>
|
|
#include <faiss/IndexFlat.h>
|
|
|
|
#include <faiss/utils/hamming.h>
|
|
|
|
#include <faiss/impl/FaissAssert.h>
|
|
|
|
#include <faiss/impl/AuxIndexStructures.h>
|
|
|
|
namespace faiss {
|
|
|
|
/*****************************************
|
|
* IndexIVFPQ implementation
|
|
******************************************/
|
|
|
|
IndexIVFPQ::IndexIVFPQ (Index * quantizer, size_t d, size_t nlist,
|
|
size_t M, size_t nbits_per_idx, MetricType metric):
|
|
IndexIVF (quantizer, d, nlist, 0, metric),
|
|
pq (d, M, nbits_per_idx)
|
|
{
|
|
FAISS_THROW_IF_NOT (nbits_per_idx <= 8);
|
|
code_size = pq.code_size;
|
|
invlists->code_size = code_size;
|
|
is_trained = false;
|
|
by_residual = true;
|
|
use_precomputed_table = 0;
|
|
scan_table_threshold = 0;
|
|
|
|
polysemous_training = nullptr;
|
|
do_polysemous_training = false;
|
|
polysemous_ht = 0;
|
|
|
|
}
|
|
|
|
|
|
/****************************************************************
|
|
* training */
|
|
|
|
void IndexIVFPQ::train_residual (idx_t n, const float *x)
|
|
{
|
|
train_residual_o (n, x, nullptr);
|
|
}
|
|
|
|
|
|
void IndexIVFPQ::train_residual_o (idx_t n, const float *x, float *residuals_2)
|
|
{
|
|
const float * x_in = x;
|
|
|
|
x = fvecs_maybe_subsample (
|
|
d, (size_t*)&n, pq.cp.max_points_per_centroid * pq.ksub,
|
|
x, verbose, pq.cp.seed);
|
|
|
|
ScopeDeleter<float> del_x (x_in == x ? nullptr : x);
|
|
|
|
const float *trainset;
|
|
ScopeDeleter<float> del_residuals;
|
|
if (by_residual) {
|
|
if(verbose) printf("computing residuals\n");
|
|
idx_t * assign = new idx_t [n]; // assignement to coarse centroids
|
|
ScopeDeleter<idx_t> del (assign);
|
|
quantizer->assign (n, x, assign);
|
|
float *residuals = new float [n * d];
|
|
del_residuals.set (residuals);
|
|
for (idx_t i = 0; i < n; i++)
|
|
quantizer->compute_residual (x + i * d, residuals+i*d, assign[i]);
|
|
|
|
trainset = residuals;
|
|
} else {
|
|
trainset = x;
|
|
}
|
|
if (verbose)
|
|
printf ("training %zdx%zd product quantizer on %ld vectors in %dD\n",
|
|
pq.M, pq.ksub, n, d);
|
|
pq.verbose = verbose;
|
|
pq.train (n, trainset);
|
|
|
|
if (do_polysemous_training) {
|
|
if (verbose)
|
|
printf("doing polysemous training for PQ\n");
|
|
PolysemousTraining default_pt;
|
|
PolysemousTraining *pt = polysemous_training;
|
|
if (!pt) pt = &default_pt;
|
|
pt->optimize_pq_for_hamming (pq, n, trainset);
|
|
}
|
|
|
|
// prepare second-level residuals for refine PQ
|
|
if (residuals_2) {
|
|
uint8_t *train_codes = new uint8_t [pq.code_size * n];
|
|
ScopeDeleter<uint8_t> del (train_codes);
|
|
pq.compute_codes (trainset, train_codes, n);
|
|
|
|
for (idx_t i = 0; i < n; i++) {
|
|
const float *xx = trainset + i * d;
|
|
float * res = residuals_2 + i * d;
|
|
pq.decode (train_codes + i * pq.code_size, res);
|
|
for (int j = 0; j < d; j++)
|
|
res[j] = xx[j] - res[j];
|
|
}
|
|
|
|
}
|
|
|
|
if (by_residual) {
|
|
precompute_table ();
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/****************************************************************
|
|
* IVFPQ as codec */
|
|
|
|
|
|
/* produce a binary signature based on the residual vector */
|
|
void IndexIVFPQ::encode (idx_t key, const float * x, uint8_t * code) const
|
|
{
|
|
if (by_residual) {
|
|
float residual_vec[d];
|
|
quantizer->compute_residual (x, residual_vec, key);
|
|
pq.compute_code (residual_vec, code);
|
|
}
|
|
else pq.compute_code (x, code);
|
|
}
|
|
|
|
void IndexIVFPQ::encode_multiple (size_t n, idx_t *keys,
|
|
const float * x, uint8_t * xcodes,
|
|
bool compute_keys) const
|
|
{
|
|
if (compute_keys)
|
|
quantizer->assign (n, x, keys);
|
|
|
|
encode_vectors (n, x, keys, xcodes);
|
|
}
|
|
|
|
void IndexIVFPQ::decode_multiple (size_t n, const idx_t *keys,
|
|
const uint8_t * xcodes, float * x) const
|
|
{
|
|
pq.decode (xcodes, x, n);
|
|
if (by_residual) {
|
|
std::vector<float> centroid (d);
|
|
for (size_t i = 0; i < n; i++) {
|
|
quantizer->reconstruct (keys[i], centroid.data());
|
|
float *xi = x + i * d;
|
|
for (size_t j = 0; j < d; j++) {
|
|
xi [j] += centroid [j];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
/****************************************************************
|
|
* add */
|
|
|
|
|
|
void IndexIVFPQ::add_with_ids (idx_t n, const float * x, const idx_t *xids)
|
|
{
|
|
add_core_o (n, x, xids, nullptr);
|
|
}
|
|
|
|
|
|
static float * compute_residuals (
|
|
const Index *quantizer,
|
|
Index::idx_t n, const float* x,
|
|
const Index::idx_t *list_nos)
|
|
{
|
|
size_t d = quantizer->d;
|
|
float *residuals = new float [n * d];
|
|
// TODO: parallelize?
|
|
for (size_t i = 0; i < n; i++) {
|
|
if (list_nos[i] < 0)
|
|
memset (residuals + i * d, 0, sizeof(*residuals) * d);
|
|
else
|
|
quantizer->compute_residual (
|
|
x + i * d, residuals + i * d, list_nos[i]);
|
|
}
|
|
return residuals;
|
|
}
|
|
|
|
void IndexIVFPQ::encode_vectors(idx_t n, const float* x,
|
|
const idx_t *list_nos,
|
|
uint8_t * codes,
|
|
bool include_listnos) const
|
|
{
|
|
if (by_residual) {
|
|
float *to_encode = compute_residuals (quantizer, n, x, list_nos);
|
|
ScopeDeleter<float> del (to_encode);
|
|
pq.compute_codes (to_encode, codes, n);
|
|
} else {
|
|
pq.compute_codes (x, codes, n);
|
|
}
|
|
|
|
if (include_listnos) {
|
|
size_t coarse_size = coarse_code_size();
|
|
for (idx_t i = n - 1; i >= 0; i--) {
|
|
uint8_t * code = codes + i * (coarse_size + code_size);
|
|
memmove (code + coarse_size,
|
|
codes + i * code_size, code_size);
|
|
encode_listno (list_nos[i], code);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
void IndexIVFPQ::sa_decode (idx_t n, const uint8_t *codes,
|
|
float *x) const
|
|
{
|
|
size_t coarse_size = coarse_code_size ();
|
|
|
|
#pragma omp parallel
|
|
{
|
|
std::vector<float> residual (d);
|
|
|
|
#pragma omp for
|
|
for (size_t i = 0; i < n; i++) {
|
|
const uint8_t *code = codes + i * (code_size + coarse_size);
|
|
int64_t list_no = decode_listno (code);
|
|
float *xi = x + i * d;
|
|
pq.decode (code + coarse_size, xi);
|
|
if (by_residual) {
|
|
quantizer->reconstruct (list_no, residual.data());
|
|
for (size_t j = 0; j < d; j++) {
|
|
xi[j] += residual[j];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void IndexIVFPQ::add_core_o (idx_t n, const float * x, const idx_t *xids,
|
|
float *residuals_2, const idx_t *precomputed_idx)
|
|
{
|
|
|
|
idx_t bs = 32768;
|
|
if (n > bs) {
|
|
for (idx_t i0 = 0; i0 < n; i0 += bs) {
|
|
idx_t i1 = std::min(i0 + bs, n);
|
|
if (verbose) {
|
|
printf("IndexIVFPQ::add_core_o: adding %ld:%ld / %ld\n",
|
|
i0, i1, n);
|
|
}
|
|
add_core_o (i1 - i0, x + i0 * d,
|
|
xids ? xids + i0 : nullptr,
|
|
residuals_2 ? residuals_2 + i0 * d : nullptr,
|
|
precomputed_idx ? precomputed_idx + i0 : nullptr);
|
|
}
|
|
return;
|
|
}
|
|
|
|
InterruptCallback::check();
|
|
|
|
direct_map.check_can_add (xids);
|
|
|
|
FAISS_THROW_IF_NOT (is_trained);
|
|
double t0 = getmillisecs ();
|
|
const idx_t * idx;
|
|
ScopeDeleter<idx_t> del_idx;
|
|
|
|
if (precomputed_idx) {
|
|
idx = precomputed_idx;
|
|
} else {
|
|
idx_t * idx0 = new idx_t [n];
|
|
del_idx.set (idx0);
|
|
quantizer->assign (n, x, idx0);
|
|
idx = idx0;
|
|
}
|
|
|
|
double t1 = getmillisecs ();
|
|
uint8_t * xcodes = new uint8_t [n * code_size];
|
|
ScopeDeleter<uint8_t> del_xcodes (xcodes);
|
|
|
|
const float *to_encode = nullptr;
|
|
ScopeDeleter<float> del_to_encode;
|
|
|
|
if (by_residual) {
|
|
to_encode = compute_residuals (quantizer, n, x, idx);
|
|
del_to_encode.set (to_encode);
|
|
} else {
|
|
to_encode = x;
|
|
}
|
|
pq.compute_codes (to_encode, xcodes, n);
|
|
|
|
double t2 = getmillisecs ();
|
|
// TODO: parallelize?
|
|
size_t n_ignore = 0;
|
|
for (size_t i = 0; i < n; i++) {
|
|
idx_t key = idx[i];
|
|
idx_t id = xids ? xids[i] : ntotal + i;
|
|
if (key < 0) {
|
|
direct_map.add_single_id (id, -1, 0);
|
|
n_ignore ++;
|
|
if (residuals_2)
|
|
memset (residuals_2, 0, sizeof(*residuals_2) * d);
|
|
continue;
|
|
}
|
|
|
|
uint8_t *code = xcodes + i * code_size;
|
|
size_t offset = invlists->add_entry (key, id, code);
|
|
|
|
if (residuals_2) {
|
|
float *res2 = residuals_2 + i * d;
|
|
const float *xi = to_encode + i * d;
|
|
pq.decode (code, res2);
|
|
for (int j = 0; j < d; j++)
|
|
res2[j] = xi[j] - res2[j];
|
|
}
|
|
|
|
direct_map.add_single_id (id, key, offset);
|
|
}
|
|
|
|
double t3 = getmillisecs ();
|
|
if(verbose) {
|
|
char comment[100] = {0};
|
|
if (n_ignore > 0)
|
|
snprintf (comment, 100, "(%ld vectors ignored)", n_ignore);
|
|
printf(" add_core times: %.3f %.3f %.3f %s\n",
|
|
t1 - t0, t2 - t1, t3 - t2, comment);
|
|
}
|
|
ntotal += n;
|
|
}
|
|
|
|
|
|
void IndexIVFPQ::reconstruct_from_offset (int64_t list_no, int64_t offset,
|
|
float* recons) const
|
|
{
|
|
const uint8_t* code = invlists->get_single_code (list_no, offset);
|
|
|
|
if (by_residual) {
|
|
std::vector<float> centroid(d);
|
|
quantizer->reconstruct (list_no, centroid.data());
|
|
|
|
pq.decode (code, recons);
|
|
for (int i = 0; i < d; ++i) {
|
|
recons[i] += centroid[i];
|
|
}
|
|
} else {
|
|
pq.decode (code, recons);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
/// 2G by default, accommodates tables up to PQ32 w/ 65536 centroids
|
|
size_t IndexIVFPQ::precomputed_table_max_bytes = ((size_t)1) << 31;
|
|
|
|
/** Precomputed tables for residuals
|
|
*
|
|
* During IVFPQ search with by_residual, we compute
|
|
*
|
|
* d = || x - y_C - y_R ||^2
|
|
*
|
|
* where x is the query vector, y_C the coarse centroid, y_R the
|
|
* refined PQ centroid. The expression can be decomposed as:
|
|
*
|
|
* d = || x - y_C ||^2 + || y_R ||^2 + 2 * (y_C|y_R) - 2 * (x|y_R)
|
|
* --------------- --------------------------- -------
|
|
* term 1 term 2 term 3
|
|
*
|
|
* When using multiprobe, we use the following decomposition:
|
|
* - term 1 is the distance to the coarse centroid, that is computed
|
|
* during the 1st stage search.
|
|
* - term 2 can be precomputed, as it does not involve x. However,
|
|
* because of the PQ, it needs nlist * M * ksub storage. This is why
|
|
* use_precomputed_table is off by default
|
|
* - term 3 is the classical non-residual distance table.
|
|
*
|
|
* Since y_R defined by a product quantizer, it is split across
|
|
* subvectors and stored separately for each subvector. If the coarse
|
|
* quantizer is a MultiIndexQuantizer then the table can be stored
|
|
* more compactly.
|
|
*
|
|
* At search time, the tables for term 2 and term 3 are added up. This
|
|
* is faster when the length of the lists is > ksub * M.
|
|
*/
|
|
|
|
void IndexIVFPQ::precompute_table ()
|
|
{
|
|
if (use_precomputed_table == -1)
|
|
return;
|
|
|
|
if (use_precomputed_table == 0) { // then choose the type of table
|
|
if (quantizer->metric_type == METRIC_INNER_PRODUCT) {
|
|
if (verbose) {
|
|
printf("IndexIVFPQ::precompute_table: precomputed "
|
|
"tables not needed for inner product quantizers\n");
|
|
}
|
|
return;
|
|
}
|
|
const MultiIndexQuantizer *miq =
|
|
dynamic_cast<const MultiIndexQuantizer *> (quantizer);
|
|
if (miq && pq.M % miq->pq.M == 0)
|
|
use_precomputed_table = 2;
|
|
else {
|
|
size_t table_size = pq.M * pq.ksub * nlist * sizeof(float);
|
|
if (table_size > precomputed_table_max_bytes) {
|
|
if (verbose) {
|
|
printf(
|
|
"IndexIVFPQ::precompute_table: not precomputing table, "
|
|
"it would be too big: %ld bytes (max %ld)\n",
|
|
table_size, precomputed_table_max_bytes);
|
|
use_precomputed_table = 0;
|
|
}
|
|
return;
|
|
}
|
|
use_precomputed_table = 1;
|
|
}
|
|
} // otherwise assume user has set appropriate flag on input
|
|
|
|
if (verbose) {
|
|
printf ("precomputing IVFPQ tables type %d\n",
|
|
use_precomputed_table);
|
|
}
|
|
|
|
// squared norms of the PQ centroids
|
|
std::vector<float> r_norms (pq.M * pq.ksub, NAN);
|
|
for (int m = 0; m < pq.M; m++)
|
|
for (int j = 0; j < pq.ksub; j++)
|
|
r_norms [m * pq.ksub + j] =
|
|
fvec_norm_L2sqr (pq.get_centroids (m, j), pq.dsub);
|
|
|
|
if (use_precomputed_table == 1) {
|
|
|
|
precomputed_table.resize (nlist * pq.M * pq.ksub);
|
|
std::vector<float> centroid (d);
|
|
|
|
for (size_t i = 0; i < nlist; i++) {
|
|
quantizer->reconstruct (i, centroid.data());
|
|
|
|
float *tab = &precomputed_table[i * pq.M * pq.ksub];
|
|
pq.compute_inner_prod_table (centroid.data(), tab);
|
|
fvec_madd (pq.M * pq.ksub, r_norms.data(), 2.0, tab, tab);
|
|
}
|
|
} else if (use_precomputed_table == 2) {
|
|
const MultiIndexQuantizer *miq =
|
|
dynamic_cast<const MultiIndexQuantizer *> (quantizer);
|
|
FAISS_THROW_IF_NOT (miq);
|
|
const ProductQuantizer &cpq = miq->pq;
|
|
FAISS_THROW_IF_NOT (pq.M % cpq.M == 0);
|
|
|
|
precomputed_table.resize(cpq.ksub * pq.M * pq.ksub);
|
|
|
|
// reorder PQ centroid table
|
|
std::vector<float> centroids (d * cpq.ksub, NAN);
|
|
|
|
for (int m = 0; m < cpq.M; m++) {
|
|
for (size_t i = 0; i < cpq.ksub; i++) {
|
|
memcpy (centroids.data() + i * d + m * cpq.dsub,
|
|
cpq.get_centroids (m, i),
|
|
sizeof (*centroids.data()) * cpq.dsub);
|
|
}
|
|
}
|
|
|
|
pq.compute_inner_prod_tables (cpq.ksub, centroids.data (),
|
|
precomputed_table.data ());
|
|
|
|
for (size_t i = 0; i < cpq.ksub; i++) {
|
|
float *tab = &precomputed_table[i * pq.M * pq.ksub];
|
|
fvec_madd (pq.M * pq.ksub, r_norms.data(), 2.0, tab, tab);
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
namespace {
|
|
|
|
using idx_t = Index::idx_t;
|
|
|
|
|
|
#define TIC t0 = get_cycles()
|
|
#define TOC get_cycles () - t0
|
|
|
|
|
|
|
|
/** QueryTables manages the various ways of searching an
|
|
* IndexIVFPQ. The code contains a lot of branches, depending on:
|
|
* - metric_type: are we computing L2 or Inner product similarity?
|
|
* - by_residual: do we encode raw vectors or residuals?
|
|
* - use_precomputed_table: are x_R|x_C tables precomputed?
|
|
* - polysemous_ht: are we filtering with polysemous codes?
|
|
*/
|
|
struct QueryTables {
|
|
|
|
/*****************************************************
|
|
* General data from the IVFPQ
|
|
*****************************************************/
|
|
|
|
const IndexIVFPQ & ivfpq;
|
|
const IVFSearchParameters *params;
|
|
|
|
// copied from IndexIVFPQ for easier access
|
|
int d;
|
|
const ProductQuantizer & pq;
|
|
MetricType metric_type;
|
|
bool by_residual;
|
|
int use_precomputed_table;
|
|
int polysemous_ht;
|
|
|
|
// pre-allocated data buffers
|
|
float * sim_table, * sim_table_2;
|
|
float * residual_vec, *decoded_vec;
|
|
|
|
// single data buffer
|
|
std::vector<float> mem;
|
|
|
|
// for table pointers
|
|
std::vector<const float *> sim_table_ptrs;
|
|
|
|
explicit QueryTables (const IndexIVFPQ & ivfpq,
|
|
const IVFSearchParameters *params):
|
|
ivfpq(ivfpq),
|
|
d(ivfpq.d),
|
|
pq (ivfpq.pq),
|
|
metric_type (ivfpq.metric_type),
|
|
by_residual (ivfpq.by_residual),
|
|
use_precomputed_table (ivfpq.use_precomputed_table)
|
|
{
|
|
mem.resize (pq.ksub * pq.M * 2 + d * 2);
|
|
sim_table = mem.data ();
|
|
sim_table_2 = sim_table + pq.ksub * pq.M;
|
|
residual_vec = sim_table_2 + pq.ksub * pq.M;
|
|
decoded_vec = residual_vec + d;
|
|
|
|
// for polysemous
|
|
polysemous_ht = ivfpq.polysemous_ht;
|
|
if (auto ivfpq_params =
|
|
dynamic_cast<const IVFPQSearchParameters *>(params)) {
|
|
polysemous_ht = ivfpq_params->polysemous_ht;
|
|
}
|
|
if (polysemous_ht != 0) {
|
|
q_code.resize (pq.code_size);
|
|
}
|
|
init_list_cycles = 0;
|
|
sim_table_ptrs.resize (pq.M);
|
|
}
|
|
|
|
/*****************************************************
|
|
* What we do when query is known
|
|
*****************************************************/
|
|
|
|
// field specific to query
|
|
const float * qi;
|
|
|
|
// query-specific intialization
|
|
void init_query (const float * qi) {
|
|
this->qi = qi;
|
|
if (metric_type == METRIC_INNER_PRODUCT)
|
|
init_query_IP ();
|
|
else
|
|
init_query_L2 ();
|
|
if (!by_residual && polysemous_ht != 0)
|
|
pq.compute_code (qi, q_code.data());
|
|
}
|
|
|
|
void init_query_IP () {
|
|
// precompute some tables specific to the query qi
|
|
pq.compute_inner_prod_table (qi, sim_table);
|
|
}
|
|
|
|
void init_query_L2 () {
|
|
if (!by_residual) {
|
|
pq.compute_distance_table (qi, sim_table);
|
|
} else if (use_precomputed_table) {
|
|
pq.compute_inner_prod_table (qi, sim_table_2);
|
|
}
|
|
}
|
|
|
|
/*****************************************************
|
|
* When inverted list is known: prepare computations
|
|
*****************************************************/
|
|
|
|
// fields specific to list
|
|
Index::idx_t key;
|
|
float coarse_dis;
|
|
std::vector<uint8_t> q_code;
|
|
|
|
uint64_t init_list_cycles;
|
|
|
|
/// once we know the query and the centroid, we can prepare the
|
|
/// sim_table that will be used for accumulation
|
|
/// and dis0, the initial value
|
|
float precompute_list_tables () {
|
|
float dis0 = 0;
|
|
uint64_t t0; TIC;
|
|
if (by_residual) {
|
|
if (metric_type == METRIC_INNER_PRODUCT)
|
|
dis0 = precompute_list_tables_IP ();
|
|
else
|
|
dis0 = precompute_list_tables_L2 ();
|
|
}
|
|
init_list_cycles += TOC;
|
|
return dis0;
|
|
}
|
|
|
|
float precompute_list_table_pointers () {
|
|
float dis0 = 0;
|
|
uint64_t t0; TIC;
|
|
if (by_residual) {
|
|
if (metric_type == METRIC_INNER_PRODUCT)
|
|
FAISS_THROW_MSG ("not implemented");
|
|
else
|
|
dis0 = precompute_list_table_pointers_L2 ();
|
|
}
|
|
init_list_cycles += TOC;
|
|
return dis0;
|
|
}
|
|
|
|
/*****************************************************
|
|
* compute tables for inner prod
|
|
*****************************************************/
|
|
|
|
float precompute_list_tables_IP ()
|
|
{
|
|
// prepare the sim_table that will be used for accumulation
|
|
// and dis0, the initial value
|
|
ivfpq.quantizer->reconstruct (key, decoded_vec);
|
|
// decoded_vec = centroid
|
|
float dis0 = fvec_inner_product (qi, decoded_vec, d);
|
|
|
|
if (polysemous_ht) {
|
|
for (int i = 0; i < d; i++) {
|
|
residual_vec [i] = qi[i] - decoded_vec[i];
|
|
}
|
|
pq.compute_code (residual_vec, q_code.data());
|
|
}
|
|
return dis0;
|
|
}
|
|
|
|
|
|
/*****************************************************
|
|
* compute tables for L2 distance
|
|
*****************************************************/
|
|
|
|
float precompute_list_tables_L2 ()
|
|
{
|
|
float dis0 = 0;
|
|
|
|
if (use_precomputed_table == 0 || use_precomputed_table == -1) {
|
|
ivfpq.quantizer->compute_residual (qi, residual_vec, key);
|
|
pq.compute_distance_table (residual_vec, sim_table);
|
|
|
|
if (polysemous_ht != 0) {
|
|
pq.compute_code (residual_vec, q_code.data());
|
|
}
|
|
|
|
} else if (use_precomputed_table == 1) {
|
|
dis0 = coarse_dis;
|
|
|
|
fvec_madd (pq.M * pq.ksub,
|
|
&ivfpq.precomputed_table [key * pq.ksub * pq.M],
|
|
-2.0, sim_table_2,
|
|
sim_table);
|
|
|
|
|
|
if (polysemous_ht != 0) {
|
|
ivfpq.quantizer->compute_residual (qi, residual_vec, key);
|
|
pq.compute_code (residual_vec, q_code.data());
|
|
}
|
|
|
|
} else if (use_precomputed_table == 2) {
|
|
dis0 = coarse_dis;
|
|
|
|
const MultiIndexQuantizer *miq =
|
|
dynamic_cast<const MultiIndexQuantizer *> (ivfpq.quantizer);
|
|
FAISS_THROW_IF_NOT (miq);
|
|
const ProductQuantizer &cpq = miq->pq;
|
|
int Mf = pq.M / cpq.M;
|
|
|
|
const float *qtab = sim_table_2; // query-specific table
|
|
float *ltab = sim_table; // (output) list-specific table
|
|
|
|
long k = key;
|
|
for (int cm = 0; cm < cpq.M; cm++) {
|
|
// compute PQ index
|
|
int ki = k & ((uint64_t(1) << cpq.nbits) - 1);
|
|
k >>= cpq.nbits;
|
|
|
|
// get corresponding table
|
|
const float *pc = &ivfpq.precomputed_table
|
|
[(ki * pq.M + cm * Mf) * pq.ksub];
|
|
|
|
if (polysemous_ht == 0) {
|
|
|
|
// sum up with query-specific table
|
|
fvec_madd (Mf * pq.ksub,
|
|
pc,
|
|
-2.0, qtab,
|
|
ltab);
|
|
ltab += Mf * pq.ksub;
|
|
qtab += Mf * pq.ksub;
|
|
} else {
|
|
for (int m = cm * Mf; m < (cm + 1) * Mf; m++) {
|
|
q_code[m] = fvec_madd_and_argmin
|
|
(pq.ksub, pc, -2, qtab, ltab);
|
|
pc += pq.ksub;
|
|
ltab += pq.ksub;
|
|
qtab += pq.ksub;
|
|
}
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
return dis0;
|
|
}
|
|
|
|
float precompute_list_table_pointers_L2 ()
|
|
{
|
|
float dis0 = 0;
|
|
|
|
if (use_precomputed_table == 1) {
|
|
dis0 = coarse_dis;
|
|
|
|
const float * s = &ivfpq.precomputed_table [key * pq.ksub * pq.M];
|
|
for (int m = 0; m < pq.M; m++) {
|
|
sim_table_ptrs [m] = s;
|
|
s += pq.ksub;
|
|
}
|
|
} else if (use_precomputed_table == 2) {
|
|
dis0 = coarse_dis;
|
|
|
|
const MultiIndexQuantizer *miq =
|
|
dynamic_cast<const MultiIndexQuantizer *> (ivfpq.quantizer);
|
|
FAISS_THROW_IF_NOT (miq);
|
|
const ProductQuantizer &cpq = miq->pq;
|
|
int Mf = pq.M / cpq.M;
|
|
|
|
long k = key;
|
|
int m0 = 0;
|
|
for (int cm = 0; cm < cpq.M; cm++) {
|
|
int ki = k & ((uint64_t(1) << cpq.nbits) - 1);
|
|
k >>= cpq.nbits;
|
|
|
|
const float *pc = &ivfpq.precomputed_table
|
|
[(ki * pq.M + cm * Mf) * pq.ksub];
|
|
|
|
for (int m = m0; m < m0 + Mf; m++) {
|
|
sim_table_ptrs [m] = pc;
|
|
pc += pq.ksub;
|
|
}
|
|
m0 += Mf;
|
|
}
|
|
} else {
|
|
FAISS_THROW_MSG ("need precomputed tables");
|
|
}
|
|
|
|
if (polysemous_ht) {
|
|
FAISS_THROW_MSG ("not implemented");
|
|
// Not clear that it makes sense to implemente this,
|
|
// because it costs M * ksub, which is what we wanted to
|
|
// avoid with the tables pointers.
|
|
}
|
|
|
|
return dis0;
|
|
}
|
|
|
|
|
|
};
|
|
|
|
|
|
|
|
template<class C>
|
|
struct KnnSearchResults {
|
|
idx_t key;
|
|
const idx_t *ids;
|
|
|
|
// heap params
|
|
size_t k;
|
|
float * heap_sim;
|
|
idx_t * heap_ids;
|
|
|
|
size_t nup;
|
|
|
|
inline void add (idx_t j, float dis) {
|
|
if (C::cmp (heap_sim[0], dis)) {
|
|
heap_pop<C> (k, heap_sim, heap_ids);
|
|
idx_t id = ids ? ids[j] : lo_build (key, j);
|
|
heap_push<C> (k, heap_sim, heap_ids, dis, id);
|
|
nup++;
|
|
}
|
|
}
|
|
|
|
};
|
|
|
|
template<class C>
|
|
struct RangeSearchResults {
|
|
idx_t key;
|
|
const idx_t *ids;
|
|
|
|
// wrapped result structure
|
|
float radius;
|
|
RangeQueryResult & rres;
|
|
|
|
inline void add (idx_t j, float dis) {
|
|
if (C::cmp (radius, dis)) {
|
|
idx_t id = ids ? ids[j] : lo_build (key, j);
|
|
rres.add (dis, id);
|
|
}
|
|
}
|
|
};
|
|
|
|
|
|
|
|
/*****************************************************
|
|
* Scaning the codes.
|
|
* The scanning functions call their favorite precompute_*
|
|
* function to precompute the tables they need.
|
|
*****************************************************/
|
|
template <typename IDType, MetricType METRIC_TYPE, class PQDecoder>
|
|
struct IVFPQScannerT: QueryTables {
|
|
|
|
const uint8_t * list_codes;
|
|
const IDType * list_ids;
|
|
size_t list_size;
|
|
|
|
IVFPQScannerT (const IndexIVFPQ & ivfpq, const IVFSearchParameters *params):
|
|
QueryTables (ivfpq, params)
|
|
{
|
|
assert(METRIC_TYPE == metric_type);
|
|
}
|
|
|
|
float dis0;
|
|
|
|
void init_list (idx_t list_no, float coarse_dis,
|
|
int mode) {
|
|
this->key = list_no;
|
|
this->coarse_dis = coarse_dis;
|
|
|
|
if (mode == 2) {
|
|
dis0 = precompute_list_tables ();
|
|
} else if (mode == 1) {
|
|
dis0 = precompute_list_table_pointers ();
|
|
}
|
|
}
|
|
|
|
/*****************************************************
|
|
* Scaning the codes: simple PQ scan.
|
|
*****************************************************/
|
|
|
|
/// version of the scan where we use precomputed tables
|
|
template<class SearchResultType>
|
|
void scan_list_with_table (size_t ncode, const uint8_t *codes,
|
|
SearchResultType & res) const
|
|
{
|
|
for (size_t j = 0; j < ncode; j++) {
|
|
PQDecoder decoder(codes, pq.nbits);
|
|
codes += pq.code_size;
|
|
float dis = dis0;
|
|
const float *tab = sim_table;
|
|
|
|
for (size_t m = 0; m < pq.M; m++) {
|
|
dis += tab[decoder.decode()];
|
|
tab += pq.ksub;
|
|
}
|
|
|
|
res.add(j, dis);
|
|
}
|
|
}
|
|
|
|
|
|
/// tables are not precomputed, but pointers are provided to the
|
|
/// relevant X_c|x_r tables
|
|
template<class SearchResultType>
|
|
void scan_list_with_pointer (size_t ncode, const uint8_t *codes,
|
|
SearchResultType & res) const
|
|
{
|
|
for (size_t j = 0; j < ncode; j++) {
|
|
PQDecoder decoder(codes, pq.nbits);
|
|
codes += pq.code_size;
|
|
|
|
float dis = dis0;
|
|
const float *tab = sim_table_2;
|
|
|
|
for (size_t m = 0; m < pq.M; m++) {
|
|
int ci = decoder.decode();
|
|
dis += sim_table_ptrs [m][ci] - 2 * tab [ci];
|
|
tab += pq.ksub;
|
|
}
|
|
res.add (j, dis);
|
|
}
|
|
}
|
|
|
|
|
|
/// nothing is precomputed: access residuals on-the-fly
|
|
template<class SearchResultType>
|
|
void scan_on_the_fly_dist (size_t ncode, const uint8_t *codes,
|
|
SearchResultType &res) const
|
|
{
|
|
const float *dvec;
|
|
float dis0 = 0;
|
|
if (by_residual) {
|
|
if (METRIC_TYPE == METRIC_INNER_PRODUCT) {
|
|
ivfpq.quantizer->reconstruct (key, residual_vec);
|
|
dis0 = fvec_inner_product (residual_vec, qi, d);
|
|
} else {
|
|
ivfpq.quantizer->compute_residual (qi, residual_vec, key);
|
|
}
|
|
dvec = residual_vec;
|
|
} else {
|
|
dvec = qi;
|
|
dis0 = 0;
|
|
}
|
|
|
|
for (size_t j = 0; j < ncode; j++) {
|
|
|
|
pq.decode (codes, decoded_vec);
|
|
codes += pq.code_size;
|
|
|
|
float dis;
|
|
if (METRIC_TYPE == METRIC_INNER_PRODUCT) {
|
|
dis = dis0 + fvec_inner_product (decoded_vec, qi, d);
|
|
} else {
|
|
dis = fvec_L2sqr (decoded_vec, dvec, d);
|
|
}
|
|
res.add (j, dis);
|
|
}
|
|
}
|
|
|
|
/*****************************************************
|
|
* Scanning codes with polysemous filtering
|
|
*****************************************************/
|
|
|
|
template <class HammingComputer, class SearchResultType>
|
|
void scan_list_polysemous_hc (
|
|
size_t ncode, const uint8_t *codes,
|
|
SearchResultType & res) const
|
|
{
|
|
int ht = ivfpq.polysemous_ht;
|
|
size_t n_hamming_pass = 0, nup = 0;
|
|
|
|
int code_size = pq.code_size;
|
|
|
|
HammingComputer hc (q_code.data(), code_size);
|
|
|
|
for (size_t j = 0; j < ncode; j++) {
|
|
const uint8_t *b_code = codes;
|
|
int hd = hc.hamming (b_code);
|
|
if (hd < ht) {
|
|
n_hamming_pass ++;
|
|
PQDecoder decoder(codes, pq.nbits);
|
|
|
|
float dis = dis0;
|
|
const float *tab = sim_table;
|
|
|
|
for (size_t m = 0; m < pq.M; m++) {
|
|
dis += tab[decoder.decode()];
|
|
tab += pq.ksub;
|
|
}
|
|
|
|
res.add (j, dis);
|
|
}
|
|
codes += code_size;
|
|
}
|
|
#pragma omp critical
|
|
{
|
|
indexIVFPQ_stats.n_hamming_pass += n_hamming_pass;
|
|
}
|
|
}
|
|
|
|
template<class SearchResultType>
|
|
void scan_list_polysemous (
|
|
size_t ncode, const uint8_t *codes,
|
|
SearchResultType &res) const
|
|
{
|
|
switch (pq.code_size) {
|
|
#define HANDLE_CODE_SIZE(cs) \
|
|
case cs: \
|
|
scan_list_polysemous_hc \
|
|
<HammingComputer ## cs, SearchResultType> \
|
|
(ncode, codes, res); \
|
|
break
|
|
HANDLE_CODE_SIZE(4);
|
|
HANDLE_CODE_SIZE(8);
|
|
HANDLE_CODE_SIZE(16);
|
|
HANDLE_CODE_SIZE(20);
|
|
HANDLE_CODE_SIZE(32);
|
|
HANDLE_CODE_SIZE(64);
|
|
#undef HANDLE_CODE_SIZE
|
|
default:
|
|
if (pq.code_size % 8 == 0)
|
|
scan_list_polysemous_hc
|
|
<HammingComputerM8, SearchResultType>
|
|
(ncode, codes, res);
|
|
else
|
|
scan_list_polysemous_hc
|
|
<HammingComputerM4, SearchResultType>
|
|
(ncode, codes, res);
|
|
break;
|
|
}
|
|
}
|
|
|
|
};
|
|
|
|
|
|
/* We put as many parameters as possible in template. Hopefully the
|
|
* gain in runtime is worth the code bloat. C is the comparator < or
|
|
* >, it is directly related to METRIC_TYPE. precompute_mode is how
|
|
* much we precompute (2 = precompute distance tables, 1 = precompute
|
|
* pointers to distances, 0 = compute distances one by one).
|
|
* Currently only 2 is supported */
|
|
template<MetricType METRIC_TYPE, class C, class PQDecoder>
|
|
struct IVFPQScanner:
|
|
IVFPQScannerT<Index::idx_t, METRIC_TYPE, PQDecoder>,
|
|
InvertedListScanner
|
|
{
|
|
bool store_pairs;
|
|
int precompute_mode;
|
|
|
|
IVFPQScanner(const IndexIVFPQ & ivfpq, bool store_pairs,
|
|
int precompute_mode):
|
|
IVFPQScannerT<Index::idx_t, METRIC_TYPE, PQDecoder>(ivfpq, nullptr),
|
|
store_pairs(store_pairs), precompute_mode(precompute_mode)
|
|
{
|
|
}
|
|
|
|
void set_query (const float *query) override {
|
|
this->init_query (query);
|
|
}
|
|
|
|
void set_list (idx_t list_no, float coarse_dis) override {
|
|
this->init_list (list_no, coarse_dis, precompute_mode);
|
|
}
|
|
|
|
float distance_to_code (const uint8_t *code) const override {
|
|
assert(precompute_mode == 2);
|
|
float dis = this->dis0;
|
|
const float *tab = this->sim_table;
|
|
PQDecoder decoder(code, this->pq.nbits);
|
|
|
|
for (size_t m = 0; m < this->pq.M; m++) {
|
|
dis += tab[decoder.decode()];
|
|
tab += this->pq.ksub;
|
|
}
|
|
return dis;
|
|
}
|
|
|
|
size_t scan_codes (size_t ncode,
|
|
const uint8_t *codes,
|
|
const idx_t *ids,
|
|
float *heap_sim, idx_t *heap_ids,
|
|
size_t k) const override
|
|
{
|
|
KnnSearchResults<C> res = {
|
|
/* key */ this->key,
|
|
/* ids */ this->store_pairs ? nullptr : ids,
|
|
/* k */ k,
|
|
/* heap_sim */ heap_sim,
|
|
/* heap_ids */ heap_ids,
|
|
/* nup */ 0
|
|
};
|
|
|
|
if (this->polysemous_ht > 0) {
|
|
assert(precompute_mode == 2);
|
|
this->scan_list_polysemous (ncode, codes, res);
|
|
} else if (precompute_mode == 2) {
|
|
this->scan_list_with_table (ncode, codes, res);
|
|
} else if (precompute_mode == 1) {
|
|
this->scan_list_with_pointer (ncode, codes, res);
|
|
} else if (precompute_mode == 0) {
|
|
this->scan_on_the_fly_dist (ncode, codes, res);
|
|
} else {
|
|
FAISS_THROW_MSG("bad precomp mode");
|
|
}
|
|
return res.nup;
|
|
}
|
|
|
|
void scan_codes_range (size_t ncode,
|
|
const uint8_t *codes,
|
|
const idx_t *ids,
|
|
float radius,
|
|
RangeQueryResult & rres) const override
|
|
{
|
|
RangeSearchResults<C> res = {
|
|
/* key */ this->key,
|
|
/* ids */ this->store_pairs ? nullptr : ids,
|
|
/* radius */ radius,
|
|
/* rres */ rres
|
|
};
|
|
|
|
if (this->polysemous_ht > 0) {
|
|
assert(precompute_mode == 2);
|
|
this->scan_list_polysemous (ncode, codes, res);
|
|
} else if (precompute_mode == 2) {
|
|
this->scan_list_with_table (ncode, codes, res);
|
|
} else if (precompute_mode == 1) {
|
|
this->scan_list_with_pointer (ncode, codes, res);
|
|
} else if (precompute_mode == 0) {
|
|
this->scan_on_the_fly_dist (ncode, codes, res);
|
|
} else {
|
|
FAISS_THROW_MSG("bad precomp mode");
|
|
}
|
|
|
|
}
|
|
};
|
|
|
|
template<class PQDecoder>
|
|
InvertedListScanner *get_InvertedListScanner1 (const IndexIVFPQ &index,
|
|
bool store_pairs)
|
|
{
|
|
|
|
if (index.metric_type == METRIC_INNER_PRODUCT) {
|
|
return new IVFPQScanner
|
|
<METRIC_INNER_PRODUCT, CMin<float, idx_t>, PQDecoder>
|
|
(index, store_pairs, 2);
|
|
} else if (index.metric_type == METRIC_L2) {
|
|
return new IVFPQScanner
|
|
<METRIC_L2, CMax<float, idx_t>, PQDecoder>
|
|
(index, store_pairs, 2);
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
|
|
} // anonymous namespace
|
|
|
|
InvertedListScanner *
|
|
IndexIVFPQ::get_InvertedListScanner (bool store_pairs) const
|
|
{
|
|
|
|
if (pq.nbits == 8) {
|
|
return get_InvertedListScanner1<PQDecoder8> (*this, store_pairs);
|
|
} else if (pq.nbits == 16) {
|
|
return get_InvertedListScanner1<PQDecoder16> (*this, store_pairs);
|
|
} else {
|
|
return get_InvertedListScanner1<PQDecoderGeneric> (*this, store_pairs);
|
|
}
|
|
return nullptr;
|
|
|
|
}
|
|
|
|
|
|
|
|
IndexIVFPQStats indexIVFPQ_stats;
|
|
|
|
void IndexIVFPQStats::reset () {
|
|
memset (this, 0, sizeof (*this));
|
|
}
|
|
|
|
|
|
|
|
IndexIVFPQ::IndexIVFPQ ()
|
|
{
|
|
// initialize some runtime values
|
|
use_precomputed_table = 0;
|
|
scan_table_threshold = 0;
|
|
do_polysemous_training = false;
|
|
polysemous_ht = 0;
|
|
polysemous_training = nullptr;
|
|
}
|
|
|
|
|
|
struct CodeCmp {
|
|
const uint8_t *tab;
|
|
size_t code_size;
|
|
bool operator () (int a, int b) const {
|
|
return cmp (a, b) > 0;
|
|
}
|
|
int cmp (int a, int b) const {
|
|
return memcmp (tab + a * code_size, tab + b * code_size,
|
|
code_size);
|
|
}
|
|
};
|
|
|
|
|
|
size_t IndexIVFPQ::find_duplicates (idx_t *dup_ids, size_t *lims) const
|
|
{
|
|
size_t ngroup = 0;
|
|
lims[0] = 0;
|
|
for (size_t list_no = 0; list_no < nlist; list_no++) {
|
|
size_t n = invlists->list_size (list_no);
|
|
std::vector<int> ord (n);
|
|
for (int i = 0; i < n; i++) ord[i] = i;
|
|
InvertedLists::ScopedCodes codes (invlists, list_no);
|
|
CodeCmp cs = { codes.get(), code_size };
|
|
std::sort (ord.begin(), ord.end(), cs);
|
|
|
|
InvertedLists::ScopedIds list_ids (invlists, list_no);
|
|
int prev = -1; // all elements from prev to i-1 are equal
|
|
for (int i = 0; i < n; i++) {
|
|
if (prev >= 0 && cs.cmp (ord [prev], ord [i]) == 0) {
|
|
// same as previous => remember
|
|
if (prev + 1 == i) { // start new group
|
|
ngroup++;
|
|
lims[ngroup] = lims[ngroup - 1];
|
|
dup_ids [lims [ngroup]++] = list_ids [ord [prev]];
|
|
}
|
|
dup_ids [lims [ngroup]++] = list_ids [ord [i]];
|
|
} else { // not same as previous.
|
|
prev = i;
|
|
}
|
|
}
|
|
}
|
|
return ngroup;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
} // namespace faiss
|