faiss/gpu/test/test_pytorch_faiss.py

216 lines
6.0 KiB
Python

# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from __future__ import absolute_import, division, print_function, unicode_literals
import numpy as np
import unittest
import faiss
import torch
def swig_ptr_from_FloatTensor(x):
assert x.is_contiguous()
assert x.dtype == torch.float32
return faiss.cast_integer_to_float_ptr(
x.storage().data_ptr() + x.storage_offset() * 4)
def swig_ptr_from_LongTensor(x):
assert x.is_contiguous()
assert x.dtype == torch.int64, 'dtype=%s' % x.dtype
return faiss.cast_integer_to_long_ptr(
x.storage().data_ptr() + x.storage_offset() * 8)
def search_index_pytorch(index, x, k, D=None, I=None):
"""call the search function of an index with pytorch tensor I/O (CPU
and GPU supported)"""
assert x.is_contiguous()
n, d = x.size()
assert d == index.d
if D is None:
D = torch.empty((n, k), dtype=torch.float32, device=x.device)
else:
assert D.size() == (n, k)
if I is None:
I = torch.empty((n, k), dtype=torch.int64, device=x.device)
else:
assert I.size() == (n, k)
torch.cuda.synchronize()
xptr = swig_ptr_from_FloatTensor(x)
Iptr = swig_ptr_from_LongTensor(I)
Dptr = swig_ptr_from_FloatTensor(D)
index.search_c(n, xptr,
k, Dptr, Iptr)
torch.cuda.synchronize()
return D, I
def search_raw_array_pytorch(res, xb, xq, k, D=None, I=None,
metric=faiss.METRIC_L2):
assert xb.device == xq.device
nq, d = xq.size()
if xq.is_contiguous():
xq_row_major = True
elif xq.t().is_contiguous():
xq = xq.t() # I initially wrote xq:t(), Lua is still haunting me :-)
xq_row_major = False
else:
raise TypeError('matrix should be row or column-major')
xq_ptr = swig_ptr_from_FloatTensor(xq)
nb, d2 = xb.size()
assert d2 == d
if xb.is_contiguous():
xb_row_major = True
elif xb.t().is_contiguous():
xb = xb.t()
xb_row_major = False
else:
raise TypeError('matrix should be row or column-major')
xb_ptr = swig_ptr_from_FloatTensor(xb)
if D is None:
D = torch.empty(nq, k, device=xb.device, dtype=torch.float32)
else:
assert D.shape == (nq, k)
assert D.device == xb.device
if I is None:
I = torch.empty(nq, k, device=xb.device, dtype=torch.int64)
else:
assert I.shape == (nq, k)
assert I.device == xb.device
D_ptr = swig_ptr_from_FloatTensor(D)
I_ptr = swig_ptr_from_LongTensor(I)
faiss.bruteForceKnn(res, metric,
xb_ptr, xb_row_major, nb,
xq_ptr, xq_row_major, nq,
d, k, D_ptr, I_ptr)
return D, I
def to_column_major(x):
if hasattr(torch, 'contiguous_format'):
return x.t().clone(memory_format=torch.contiguous_format).t()
else:
# was default setting before memory_format was introduced
return x.t().clone().t()
class PytorchFaissInterop(unittest.TestCase):
def test_interop(self):
d = 16
nq = 5
nb = 20
xq = faiss.randn(nq * d, 1234).reshape(nq, d)
xb = faiss.randn(nb * d, 1235).reshape(nb, d)
res = faiss.StandardGpuResources()
index = faiss.GpuIndexFlatIP(res, d)
index.add(xb)
# reference CPU result
Dref, Iref = index.search(xq, 5)
# query is pytorch tensor (CPU)
xq_torch = torch.FloatTensor(xq)
D2, I2 = search_index_pytorch(index, xq_torch, 5)
assert np.all(Iref == I2.numpy())
# query is pytorch tensor (GPU)
xq_torch = xq_torch.cuda()
# no need for a sync here
D3, I3 = search_index_pytorch(index, xq_torch, 5)
# D3 and I3 are on torch tensors on GPU as well.
# this does a sync, which is useful because faiss and
# pytorch use different Cuda streams.
res.syncDefaultStreamCurrentDevice()
assert np.all(Iref == I3.cpu().numpy())
def test_raw_array_search(self):
d = 32
nb = 1024
nq = 128
k = 10
# make GT on Faiss CPU
xq = faiss.randn(nq * d, 1234).reshape(nq, d)
xb = faiss.randn(nb * d, 1235).reshape(nb, d)
index = faiss.IndexFlatL2(d)
index.add(xb)
gt_D, gt_I = index.search(xq, k)
# resource object, can be re-used over calls
res = faiss.StandardGpuResources()
# put on same stream as pytorch to avoid synchronizing streams
res.setDefaultNullStreamAllDevices()
for xq_row_major in True, False:
for xb_row_major in True, False:
# move to pytorch & GPU
xq_t = torch.from_numpy(xq).cuda()
xb_t = torch.from_numpy(xb).cuda()
if not xq_row_major:
xq_t = to_column_major(xq_t)
assert not xq_t.is_contiguous()
if not xb_row_major:
xb_t = to_column_major(xb_t)
assert not xb_t.is_contiguous()
D, I = search_raw_array_pytorch(res, xb_t, xq_t, k)
# back to CPU for verification
D = D.cpu().numpy()
I = I.cpu().numpy()
assert np.all(I == gt_I)
assert np.all(np.abs(D - gt_D).max() < 1e-4)
# test on subset
try:
D, I = search_raw_array_pytorch(res, xb_t, xq_t[60:80], k)
except TypeError:
if not xq_row_major:
# then it is expected
continue
# otherwise it is an error
raise
# back to CPU for verification
D = D.cpu().numpy()
I = I.cpu().numpy()
assert np.all(I == gt_I[60:80])
assert np.all(np.abs(D - gt_D[60:80]).max() < 1e-4)
if __name__ == '__main__':
unittest.main()