84 lines
1.9 KiB
Python
84 lines
1.9 KiB
Python
|
|
# Copyright (c) 2015-present, Facebook, Inc.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the CC-by-NC license found in the
|
|
# LICENSE file in the root directory of this source tree.
|
|
|
|
#! /usr/bin/env python2
|
|
|
|
import numpy as np
|
|
import time
|
|
import faiss
|
|
import sys
|
|
|
|
|
|
# Get command-line arguments
|
|
|
|
k = int(sys.argv[1])
|
|
ngpu = int(sys.argv[2])
|
|
|
|
# Load Leon's file format
|
|
|
|
def load_mnist(fname):
|
|
print "load", fname
|
|
f = open(fname)
|
|
|
|
header = np.fromfile(f, dtype='int8', count=4*4)
|
|
header = header.reshape(4, 4)[:, ::-1].copy().view('int32')
|
|
print header
|
|
nim, xd, yd = [int(x) for x in header[1:]]
|
|
|
|
data = np.fromfile(f, count=nim * xd * yd,
|
|
dtype='uint8')
|
|
|
|
print data.shape, nim, xd, yd
|
|
data = data.reshape(nim, xd, yd)
|
|
return data
|
|
|
|
x = load_mnist(basedir + 'mnist8m/mnist8m-patterns-idx3-ubyte')
|
|
|
|
print "reshape"
|
|
|
|
x = x.reshape(x.shape[0], -1).astype('float32')
|
|
|
|
|
|
def train_kmeans(x, k, ngpu):
|
|
"Runs kmeans on one or several GPUs"
|
|
d = x.shape[1]
|
|
clus = faiss.Clustering(d, k)
|
|
clus.verbose = True
|
|
clus.niter = 20
|
|
|
|
# otherwise the kmeans implementation sub-samples the training set
|
|
clus.max_points_per_centroid = 10000000
|
|
|
|
res = [faiss.StandardGpuResources() for i in range(ngpu)]
|
|
|
|
useFloat16 = False
|
|
|
|
if ngpu == 1:
|
|
index = faiss.GpuIndexFlatL2(res[0], 0, d, useFloat16)
|
|
else:
|
|
indexes = [faiss.GpuIndexFlatL2(res[i], i, d, useFloat16)
|
|
for i in range(ngpu)]
|
|
index = faiss.IndexProxy()
|
|
for sub_index in indexes:
|
|
index.addIndex(sub_index)
|
|
|
|
# perform the training
|
|
clus.train(x, index)
|
|
centroids = faiss.vector_float_to_array(clus.centroids)
|
|
|
|
obj = faiss.vector_float_to_array(clus.obj)
|
|
print "final objective: %.4g" % obj[-1]
|
|
|
|
return centroids.reshape(k, d)
|
|
|
|
print "run"
|
|
t0 = time.time()
|
|
train_kmeans(x, k, ngpu)
|
|
t1 = time.time()
|
|
|
|
print "total runtime: %.3f s" % (t1 - t0)
|