faiss/docs/html/BroadcastSum_8cu_source.html

459 lines
52 KiB
HTML

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
<meta http-equiv="X-UA-Compatible" content="IE=9"/>
<meta name="generator" content="Doxygen 1.8.5"/>
<title>Faiss: /data/users/hoss/faiss/gpu/impl/BroadcastSum.cu Source File</title>
<link href="tabs.css" rel="stylesheet" type="text/css"/>
<script type="text/javascript" src="jquery.js"></script>
<script type="text/javascript" src="dynsections.js"></script>
<link href="search/search.css" rel="stylesheet" type="text/css"/>
<script type="text/javascript" src="search/search.js"></script>
<script type="text/javascript">
$(document).ready(function() { searchBox.OnSelectItem(0); });
</script>
<link href="doxygen.css" rel="stylesheet" type="text/css" />
</head>
<body>
<div id="top"><!-- do not remove this div, it is closed by doxygen! -->
<div id="titlearea">
<table cellspacing="0" cellpadding="0">
<tbody>
<tr style="height: 56px;">
<td style="padding-left: 0.5em;">
<div id="projectname">Faiss
</div>
</td>
</tr>
</tbody>
</table>
</div>
<!-- end header part -->
<!-- Generated by Doxygen 1.8.5 -->
<script type="text/javascript">
var searchBox = new SearchBox("searchBox", "search",false,'Search');
</script>
<div id="navrow1" class="tabs">
<ul class="tablist">
<li><a href="index.html"><span>Main&#160;Page</span></a></li>
<li><a href="namespaces.html"><span>Namespaces</span></a></li>
<li><a href="annotated.html"><span>Classes</span></a></li>
<li class="current"><a href="files.html"><span>Files</span></a></li>
<li>
<div id="MSearchBox" class="MSearchBoxInactive">
<span class="left">
<img id="MSearchSelect" src="search/mag_sel.png"
onmouseover="return searchBox.OnSearchSelectShow()"
onmouseout="return searchBox.OnSearchSelectHide()"
alt=""/>
<input type="text" id="MSearchField" value="Search" accesskey="S"
onfocus="searchBox.OnSearchFieldFocus(true)"
onblur="searchBox.OnSearchFieldFocus(false)"
onkeyup="searchBox.OnSearchFieldChange(event)"/>
</span><span class="right">
<a id="MSearchClose" href="javascript:searchBox.CloseResultsWindow()"><img id="MSearchCloseImg" border="0" src="search/close.png" alt=""/></a>
</span>
</div>
</li>
</ul>
</div>
<div id="navrow2" class="tabs2">
<ul class="tablist">
<li><a href="files.html"><span>File&#160;List</span></a></li>
</ul>
</div>
<!-- window showing the filter options -->
<div id="MSearchSelectWindow"
onmouseover="return searchBox.OnSearchSelectShow()"
onmouseout="return searchBox.OnSearchSelectHide()"
onkeydown="return searchBox.OnSearchSelectKey(event)">
<a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(0)"><span class="SelectionMark">&#160;</span>All</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(1)"><span class="SelectionMark">&#160;</span>Classes</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(2)"><span class="SelectionMark">&#160;</span>Namespaces</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(3)"><span class="SelectionMark">&#160;</span>Functions</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(4)"><span class="SelectionMark">&#160;</span>Variables</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(5)"><span class="SelectionMark">&#160;</span>Typedefs</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(6)"><span class="SelectionMark">&#160;</span>Enumerations</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(7)"><span class="SelectionMark">&#160;</span>Enumerator</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(8)"><span class="SelectionMark">&#160;</span>Friends</a></div>
<!-- iframe showing the search results (closed by default) -->
<div id="MSearchResultsWindow">
<iframe src="javascript:void(0)" frameborder="0"
name="MSearchResults" id="MSearchResults">
</iframe>
</div>
<div id="nav-path" class="navpath">
<ul>
<li class="navelem"><a class="el" href="dir_5956a3e80a20e8e03eb577bedb92689f.html">gpu</a></li><li class="navelem"><a class="el" href="dir_2be73404b46ec2282840cd36fdb9a907.html">impl</a></li> </ul>
</div>
</div><!-- top -->
<div class="header">
<div class="headertitle">
<div class="title">BroadcastSum.cu</div> </div>
</div><!--header-->
<div class="contents">
<div class="fragment"><div class="line"><a name="l00001"></a><span class="lineno"> 1</span>&#160;<span class="comment">/**</span></div>
<div class="line"><a name="l00002"></a><span class="lineno"> 2</span>&#160;<span class="comment"> * Copyright (c) Facebook, Inc. and its affiliates.</span></div>
<div class="line"><a name="l00003"></a><span class="lineno"> 3</span>&#160;<span class="comment"> *</span></div>
<div class="line"><a name="l00004"></a><span class="lineno"> 4</span>&#160;<span class="comment"> * This source code is licensed under the MIT license found in the</span></div>
<div class="line"><a name="l00005"></a><span class="lineno"> 5</span>&#160;<span class="comment"> * LICENSE file in the root directory of this source tree.</span></div>
<div class="line"><a name="l00006"></a><span class="lineno"> 6</span>&#160;<span class="comment"> */</span></div>
<div class="line"><a name="l00007"></a><span class="lineno"> 7</span>&#160;</div>
<div class="line"><a name="l00008"></a><span class="lineno"> 8</span>&#160;</div>
<div class="line"><a name="l00009"></a><span class="lineno"> 9</span>&#160;<span class="preprocessor">#include &lt;algorithm&gt;</span></div>
<div class="line"><a name="l00010"></a><span class="lineno"> 10</span>&#160;<span class="preprocessor">#include &quot;../../FaissAssert.h&quot;</span></div>
<div class="line"><a name="l00011"></a><span class="lineno"> 11</span>&#160;</div>
<div class="line"><a name="l00012"></a><span class="lineno"> 12</span>&#160;<span class="preprocessor">#include &quot;../utils/DeviceUtils.h&quot;</span></div>
<div class="line"><a name="l00013"></a><span class="lineno"> 13</span>&#160;<span class="preprocessor">#include &quot;../utils/MathOperators.cuh&quot;</span></div>
<div class="line"><a name="l00014"></a><span class="lineno"> 14</span>&#160;<span class="preprocessor">#include &quot;../utils/Tensor.cuh&quot;</span></div>
<div class="line"><a name="l00015"></a><span class="lineno"> 15</span>&#160;<span class="preprocessor">#include &quot;../utils/StaticUtils.h&quot;</span></div>
<div class="line"><a name="l00016"></a><span class="lineno"> 16</span>&#160;</div>
<div class="line"><a name="l00017"></a><span class="lineno"> 17</span>&#160;<span class="keyword">namespace </span>faiss { <span class="keyword">namespace </span>gpu {</div>
<div class="line"><a name="l00018"></a><span class="lineno"> 18</span>&#160;</div>
<div class="line"><a name="l00019"></a><span class="lineno"> 19</span>&#160;<span class="keyword">template</span> &lt;<span class="keyword">typename</span> T, <span class="keywordtype">int</span> kRowsPerBlock, <span class="keywordtype">int</span> kRowUnroll, <span class="keywordtype">int</span> kColLoad&gt;</div>
<div class="line"><a name="l00020"></a><span class="lineno"> 20</span>&#160;__global__ <span class="keywordtype">void</span> sumAlongColumns(Tensor&lt;T, 1, true&gt; input,</div>
<div class="line"><a name="l00021"></a><span class="lineno"> 21</span>&#160; Tensor&lt;T, 2, true&gt; output) {</div>
<div class="line"><a name="l00022"></a><span class="lineno"> 22</span>&#160; static_assert(kRowsPerBlock % kRowUnroll == 0, <span class="stringliteral">&quot;must fit rows&quot;</span>);</div>
<div class="line"><a name="l00023"></a><span class="lineno"> 23</span>&#160;</div>
<div class="line"><a name="l00024"></a><span class="lineno"> 24</span>&#160; <span class="comment">// blockIdx.x: which chunk of rows we are responsible for updating</span></div>
<div class="line"><a name="l00025"></a><span class="lineno"> 25</span>&#160; <span class="comment">// blockIdx.y: which chunk of columns we are responsible for</span></div>
<div class="line"><a name="l00026"></a><span class="lineno"> 26</span>&#160; <span class="comment">// updating</span></div>
<div class="line"><a name="l00027"></a><span class="lineno"> 27</span>&#160; <span class="keywordtype">int</span> rowStart = blockIdx.x * kRowsPerBlock;</div>
<div class="line"><a name="l00028"></a><span class="lineno"> 28</span>&#160; <span class="keywordtype">int</span> rowEnd = rowStart + kRowsPerBlock;</div>
<div class="line"><a name="l00029"></a><span class="lineno"> 29</span>&#160; <span class="keywordtype">int</span> colStart = blockIdx.y * blockDim.x * kColLoad;</div>
<div class="line"><a name="l00030"></a><span class="lineno"> 30</span>&#160;</div>
<div class="line"><a name="l00031"></a><span class="lineno"> 31</span>&#160; <span class="comment">// FIXME: if we have exact multiples, don&#39;t need this</span></div>
<div class="line"><a name="l00032"></a><span class="lineno"> 32</span>&#160; <span class="keywordtype">bool</span> endRow = (blockIdx.x == gridDim.x - 1);</div>
<div class="line"><a name="l00033"></a><span class="lineno"> 33</span>&#160; <span class="keywordtype">bool</span> endCol = (blockIdx.y == gridDim.y - 1);</div>
<div class="line"><a name="l00034"></a><span class="lineno"> 34</span>&#160;</div>
<div class="line"><a name="l00035"></a><span class="lineno"> 35</span>&#160; <span class="keywordflow">if</span> (endRow) {</div>
<div class="line"><a name="l00036"></a><span class="lineno"> 36</span>&#160; <span class="keywordflow">if</span> (output.getSize(0) % kRowsPerBlock == 0) {</div>
<div class="line"><a name="l00037"></a><span class="lineno"> 37</span>&#160; endRow = <span class="keyword">false</span>;</div>
<div class="line"><a name="l00038"></a><span class="lineno"> 38</span>&#160; }</div>
<div class="line"><a name="l00039"></a><span class="lineno"> 39</span>&#160; }</div>
<div class="line"><a name="l00040"></a><span class="lineno"> 40</span>&#160;</div>
<div class="line"><a name="l00041"></a><span class="lineno"> 41</span>&#160; <span class="keywordflow">if</span> (endCol) {</div>
<div class="line"><a name="l00042"></a><span class="lineno"> 42</span>&#160; <span class="keywordflow">for</span> (<span class="keywordtype">int</span> col = colStart + threadIdx.x;</div>
<div class="line"><a name="l00043"></a><span class="lineno"> 43</span>&#160; col &lt; input.getSize(0); col += blockDim.x) {</div>
<div class="line"><a name="l00044"></a><span class="lineno"> 44</span>&#160; T val = input[col];</div>
<div class="line"><a name="l00045"></a><span class="lineno"> 45</span>&#160;</div>
<div class="line"><a name="l00046"></a><span class="lineno"> 46</span>&#160; <span class="keywordflow">if</span> (endRow) {</div>
<div class="line"><a name="l00047"></a><span class="lineno"> 47</span>&#160; <span class="keywordflow">for</span> (<span class="keywordtype">int</span> row = rowStart; row &lt; output.getSize(0); ++row) {</div>
<div class="line"><a name="l00048"></a><span class="lineno"> 48</span>&#160; T out = output[row][col];</div>
<div class="line"><a name="l00049"></a><span class="lineno"> 49</span>&#160; out = Math&lt;T&gt;::add(out, val);</div>
<div class="line"><a name="l00050"></a><span class="lineno"> 50</span>&#160; output[row][col] = out;</div>
<div class="line"><a name="l00051"></a><span class="lineno"> 51</span>&#160; }</div>
<div class="line"><a name="l00052"></a><span class="lineno"> 52</span>&#160; } <span class="keywordflow">else</span> {</div>
<div class="line"><a name="l00053"></a><span class="lineno"> 53</span>&#160; T rows[kRowUnroll];</div>
<div class="line"><a name="l00054"></a><span class="lineno"> 54</span>&#160;</div>
<div class="line"><a name="l00055"></a><span class="lineno"> 55</span>&#160; <span class="keywordflow">for</span> (<span class="keywordtype">int</span> row = rowStart; row &lt; rowEnd; row += kRowUnroll) {</div>
<div class="line"><a name="l00056"></a><span class="lineno"> 56</span>&#160;<span class="preprocessor">#pragma unroll</span></div>
<div class="line"><a name="l00057"></a><span class="lineno"> 57</span>&#160;<span class="preprocessor"></span> <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0; i &lt; kRowUnroll; ++i) {</div>
<div class="line"><a name="l00058"></a><span class="lineno"> 58</span>&#160; rows[i] = output[row + i][col];</div>
<div class="line"><a name="l00059"></a><span class="lineno"> 59</span>&#160; }</div>
<div class="line"><a name="l00060"></a><span class="lineno"> 60</span>&#160;</div>
<div class="line"><a name="l00061"></a><span class="lineno"> 61</span>&#160;<span class="preprocessor">#pragma unroll</span></div>
<div class="line"><a name="l00062"></a><span class="lineno"> 62</span>&#160;<span class="preprocessor"></span> <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0; i &lt; kRowUnroll; ++i) {</div>
<div class="line"><a name="l00063"></a><span class="lineno"> 63</span>&#160; rows[i] = Math&lt;T&gt;::add(rows[i], val);</div>
<div class="line"><a name="l00064"></a><span class="lineno"> 64</span>&#160; }</div>
<div class="line"><a name="l00065"></a><span class="lineno"> 65</span>&#160;</div>
<div class="line"><a name="l00066"></a><span class="lineno"> 66</span>&#160;<span class="preprocessor">#pragma unroll</span></div>
<div class="line"><a name="l00067"></a><span class="lineno"> 67</span>&#160;<span class="preprocessor"></span> <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0; i &lt; kRowUnroll; ++i) {</div>
<div class="line"><a name="l00068"></a><span class="lineno"> 68</span>&#160; output[row + i][col] = rows[i];</div>
<div class="line"><a name="l00069"></a><span class="lineno"> 69</span>&#160; }</div>
<div class="line"><a name="l00070"></a><span class="lineno"> 70</span>&#160; }</div>
<div class="line"><a name="l00071"></a><span class="lineno"> 71</span>&#160; }</div>
<div class="line"><a name="l00072"></a><span class="lineno"> 72</span>&#160; }</div>
<div class="line"><a name="l00073"></a><span class="lineno"> 73</span>&#160; } <span class="keywordflow">else</span> {</div>
<div class="line"><a name="l00074"></a><span class="lineno"> 74</span>&#160; <span class="keywordtype">int</span> col = colStart + threadIdx.x;</div>
<div class="line"><a name="l00075"></a><span class="lineno"> 75</span>&#160;</div>
<div class="line"><a name="l00076"></a><span class="lineno"> 76</span>&#160; T val[kColLoad];</div>
<div class="line"><a name="l00077"></a><span class="lineno"> 77</span>&#160;</div>
<div class="line"><a name="l00078"></a><span class="lineno"> 78</span>&#160;<span class="preprocessor">#pragma unroll</span></div>
<div class="line"><a name="l00079"></a><span class="lineno"> 79</span>&#160;<span class="preprocessor"></span> <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0; i &lt; kColLoad; ++i) {</div>
<div class="line"><a name="l00080"></a><span class="lineno"> 80</span>&#160; val[i] = input[col + i * blockDim.x];</div>
<div class="line"><a name="l00081"></a><span class="lineno"> 81</span>&#160; }</div>
<div class="line"><a name="l00082"></a><span class="lineno"> 82</span>&#160;</div>
<div class="line"><a name="l00083"></a><span class="lineno"> 83</span>&#160; <span class="keywordflow">if</span> (endRow) {</div>
<div class="line"><a name="l00084"></a><span class="lineno"> 84</span>&#160; <span class="keywordflow">for</span> (<span class="keywordtype">int</span> row = rowStart; row &lt; output.getSize(0); ++row) {</div>
<div class="line"><a name="l00085"></a><span class="lineno"> 85</span>&#160;<span class="preprocessor">#pragma unroll</span></div>
<div class="line"><a name="l00086"></a><span class="lineno"> 86</span>&#160;<span class="preprocessor"></span> <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0; i &lt; kColLoad; ++i) {</div>
<div class="line"><a name="l00087"></a><span class="lineno"> 87</span>&#160; T out = output[row][col + i * blockDim.x];</div>
<div class="line"><a name="l00088"></a><span class="lineno"> 88</span>&#160; out = Math&lt;T&gt;::add(out, val[i]);</div>
<div class="line"><a name="l00089"></a><span class="lineno"> 89</span>&#160; output[row][col + i * blockDim.x] = out;</div>
<div class="line"><a name="l00090"></a><span class="lineno"> 90</span>&#160; }</div>
<div class="line"><a name="l00091"></a><span class="lineno"> 91</span>&#160; }</div>
<div class="line"><a name="l00092"></a><span class="lineno"> 92</span>&#160; } <span class="keywordflow">else</span> {</div>
<div class="line"><a name="l00093"></a><span class="lineno"> 93</span>&#160; T rows[kRowUnroll * kColLoad];</div>
<div class="line"><a name="l00094"></a><span class="lineno"> 94</span>&#160;</div>
<div class="line"><a name="l00095"></a><span class="lineno"> 95</span>&#160; <span class="keywordflow">for</span> (<span class="keywordtype">int</span> row = rowStart; row &lt; rowEnd; row += kRowUnroll) {</div>
<div class="line"><a name="l00096"></a><span class="lineno"> 96</span>&#160;<span class="preprocessor">#pragma unroll</span></div>
<div class="line"><a name="l00097"></a><span class="lineno"> 97</span>&#160;<span class="preprocessor"></span> <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0; i &lt; kRowUnroll; ++i) {</div>
<div class="line"><a name="l00098"></a><span class="lineno"> 98</span>&#160;<span class="preprocessor">#pragma unroll</span></div>
<div class="line"><a name="l00099"></a><span class="lineno"> 99</span>&#160;<span class="preprocessor"></span> <span class="keywordflow">for</span> (<span class="keywordtype">int</span> j = 0; j &lt; kColLoad; ++j) {</div>
<div class="line"><a name="l00100"></a><span class="lineno"> 100</span>&#160; rows[i * kColLoad + j] =</div>
<div class="line"><a name="l00101"></a><span class="lineno"> 101</span>&#160; output[row + i][col + j * blockDim.x];</div>
<div class="line"><a name="l00102"></a><span class="lineno"> 102</span>&#160; }</div>
<div class="line"><a name="l00103"></a><span class="lineno"> 103</span>&#160; }</div>
<div class="line"><a name="l00104"></a><span class="lineno"> 104</span>&#160;</div>
<div class="line"><a name="l00105"></a><span class="lineno"> 105</span>&#160;<span class="preprocessor">#pragma unroll</span></div>
<div class="line"><a name="l00106"></a><span class="lineno"> 106</span>&#160;<span class="preprocessor"></span> <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0; i &lt; kRowUnroll; ++i) {</div>
<div class="line"><a name="l00107"></a><span class="lineno"> 107</span>&#160;<span class="preprocessor">#pragma unroll</span></div>
<div class="line"><a name="l00108"></a><span class="lineno"> 108</span>&#160;<span class="preprocessor"></span> <span class="keywordflow">for</span> (<span class="keywordtype">int</span> j = 0; j &lt; kColLoad; ++j) {</div>
<div class="line"><a name="l00109"></a><span class="lineno"> 109</span>&#160; rows[i * kColLoad + j] =</div>
<div class="line"><a name="l00110"></a><span class="lineno"> 110</span>&#160; Math&lt;T&gt;::add(rows[i * kColLoad + j], val[j]);</div>
<div class="line"><a name="l00111"></a><span class="lineno"> 111</span>&#160; }</div>
<div class="line"><a name="l00112"></a><span class="lineno"> 112</span>&#160; }</div>
<div class="line"><a name="l00113"></a><span class="lineno"> 113</span>&#160;</div>
<div class="line"><a name="l00114"></a><span class="lineno"> 114</span>&#160;<span class="preprocessor">#pragma unroll</span></div>
<div class="line"><a name="l00115"></a><span class="lineno"> 115</span>&#160;<span class="preprocessor"></span> <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0; i &lt; kRowUnroll; ++i) {</div>
<div class="line"><a name="l00116"></a><span class="lineno"> 116</span>&#160;<span class="preprocessor">#pragma unroll</span></div>
<div class="line"><a name="l00117"></a><span class="lineno"> 117</span>&#160;<span class="preprocessor"></span> <span class="keywordflow">for</span> (<span class="keywordtype">int</span> j = 0; j &lt; kColLoad; ++j) {</div>
<div class="line"><a name="l00118"></a><span class="lineno"> 118</span>&#160; output[row + i][col + j * blockDim.x] =</div>
<div class="line"><a name="l00119"></a><span class="lineno"> 119</span>&#160; rows[i * kColLoad + j];</div>
<div class="line"><a name="l00120"></a><span class="lineno"> 120</span>&#160; }</div>
<div class="line"><a name="l00121"></a><span class="lineno"> 121</span>&#160; }</div>
<div class="line"><a name="l00122"></a><span class="lineno"> 122</span>&#160; }</div>
<div class="line"><a name="l00123"></a><span class="lineno"> 123</span>&#160; }</div>
<div class="line"><a name="l00124"></a><span class="lineno"> 124</span>&#160; }</div>
<div class="line"><a name="l00125"></a><span class="lineno"> 125</span>&#160;}</div>
<div class="line"><a name="l00126"></a><span class="lineno"> 126</span>&#160;</div>
<div class="line"><a name="l00127"></a><span class="lineno"> 127</span>&#160;<span class="keyword">template</span> &lt;<span class="keyword">typename</span> T, <span class="keywordtype">int</span> kRowsPerBlock, <span class="keywordtype">int</span> kRowUnroll, <span class="keywordtype">int</span> kColLoad&gt;</div>
<div class="line"><a name="l00128"></a><span class="lineno"> 128</span>&#160;__global__ <span class="keywordtype">void</span> assignAlongColumns(Tensor&lt;T, 1, true&gt; input,</div>
<div class="line"><a name="l00129"></a><span class="lineno"> 129</span>&#160; Tensor&lt;T, 2, true&gt; output) {</div>
<div class="line"><a name="l00130"></a><span class="lineno"> 130</span>&#160; static_assert(kRowsPerBlock % kRowUnroll == 0, <span class="stringliteral">&quot;must fit rows&quot;</span>);</div>
<div class="line"><a name="l00131"></a><span class="lineno"> 131</span>&#160;</div>
<div class="line"><a name="l00132"></a><span class="lineno"> 132</span>&#160; <span class="comment">// blockIdx.x: which chunk of rows we are responsible for updating</span></div>
<div class="line"><a name="l00133"></a><span class="lineno"> 133</span>&#160; <span class="comment">// blockIdx.y: which chunk of columns we are responsible for</span></div>
<div class="line"><a name="l00134"></a><span class="lineno"> 134</span>&#160; <span class="comment">// updating</span></div>
<div class="line"><a name="l00135"></a><span class="lineno"> 135</span>&#160; <span class="keywordtype">int</span> rowStart = blockIdx.x * kRowsPerBlock;</div>
<div class="line"><a name="l00136"></a><span class="lineno"> 136</span>&#160; <span class="keywordtype">int</span> rowEnd = rowStart + kRowsPerBlock;</div>
<div class="line"><a name="l00137"></a><span class="lineno"> 137</span>&#160; <span class="keywordtype">int</span> colStart = blockIdx.y * blockDim.x * kColLoad;</div>
<div class="line"><a name="l00138"></a><span class="lineno"> 138</span>&#160;</div>
<div class="line"><a name="l00139"></a><span class="lineno"> 139</span>&#160; <span class="comment">// FIXME: if we have exact multiples, don&#39;t need this</span></div>
<div class="line"><a name="l00140"></a><span class="lineno"> 140</span>&#160; <span class="keywordtype">bool</span> endRow = (blockIdx.x == gridDim.x - 1);</div>
<div class="line"><a name="l00141"></a><span class="lineno"> 141</span>&#160; <span class="keywordtype">bool</span> endCol = (blockIdx.y == gridDim.y - 1);</div>
<div class="line"><a name="l00142"></a><span class="lineno"> 142</span>&#160;</div>
<div class="line"><a name="l00143"></a><span class="lineno"> 143</span>&#160; <span class="keywordflow">if</span> (endRow) {</div>
<div class="line"><a name="l00144"></a><span class="lineno"> 144</span>&#160; <span class="keywordflow">if</span> (output.getSize(0) % kRowsPerBlock == 0) {</div>
<div class="line"><a name="l00145"></a><span class="lineno"> 145</span>&#160; endRow = <span class="keyword">false</span>;</div>
<div class="line"><a name="l00146"></a><span class="lineno"> 146</span>&#160; }</div>
<div class="line"><a name="l00147"></a><span class="lineno"> 147</span>&#160; }</div>
<div class="line"><a name="l00148"></a><span class="lineno"> 148</span>&#160;</div>
<div class="line"><a name="l00149"></a><span class="lineno"> 149</span>&#160; <span class="keywordflow">if</span> (endCol) {</div>
<div class="line"><a name="l00150"></a><span class="lineno"> 150</span>&#160; <span class="keywordflow">for</span> (<span class="keywordtype">int</span> col = colStart + threadIdx.x;</div>
<div class="line"><a name="l00151"></a><span class="lineno"> 151</span>&#160; col &lt; input.getSize(0); col += blockDim.x) {</div>
<div class="line"><a name="l00152"></a><span class="lineno"> 152</span>&#160; T val = input[col];</div>
<div class="line"><a name="l00153"></a><span class="lineno"> 153</span>&#160;</div>
<div class="line"><a name="l00154"></a><span class="lineno"> 154</span>&#160; <span class="keywordflow">if</span> (endRow) {</div>
<div class="line"><a name="l00155"></a><span class="lineno"> 155</span>&#160; <span class="keywordflow">for</span> (<span class="keywordtype">int</span> row = rowStart; row &lt; output.getSize(0); ++row) {</div>
<div class="line"><a name="l00156"></a><span class="lineno"> 156</span>&#160; output[row][col] = val;</div>
<div class="line"><a name="l00157"></a><span class="lineno"> 157</span>&#160; }</div>
<div class="line"><a name="l00158"></a><span class="lineno"> 158</span>&#160; } <span class="keywordflow">else</span> {</div>
<div class="line"><a name="l00159"></a><span class="lineno"> 159</span>&#160; <span class="keywordflow">for</span> (<span class="keywordtype">int</span> row = rowStart; row &lt; rowEnd; row += kRowUnroll) {</div>
<div class="line"><a name="l00160"></a><span class="lineno"> 160</span>&#160;<span class="preprocessor">#pragma unroll</span></div>
<div class="line"><a name="l00161"></a><span class="lineno"> 161</span>&#160;<span class="preprocessor"></span> <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0; i &lt; kRowUnroll; ++i) {</div>
<div class="line"><a name="l00162"></a><span class="lineno"> 162</span>&#160; output[row + i][col] = val;</div>
<div class="line"><a name="l00163"></a><span class="lineno"> 163</span>&#160; }</div>
<div class="line"><a name="l00164"></a><span class="lineno"> 164</span>&#160; }</div>
<div class="line"><a name="l00165"></a><span class="lineno"> 165</span>&#160; }</div>
<div class="line"><a name="l00166"></a><span class="lineno"> 166</span>&#160; }</div>
<div class="line"><a name="l00167"></a><span class="lineno"> 167</span>&#160; } <span class="keywordflow">else</span> {</div>
<div class="line"><a name="l00168"></a><span class="lineno"> 168</span>&#160; <span class="keywordtype">int</span> col = colStart + threadIdx.x;</div>
<div class="line"><a name="l00169"></a><span class="lineno"> 169</span>&#160;</div>
<div class="line"><a name="l00170"></a><span class="lineno"> 170</span>&#160; T val[kColLoad];</div>
<div class="line"><a name="l00171"></a><span class="lineno"> 171</span>&#160;</div>
<div class="line"><a name="l00172"></a><span class="lineno"> 172</span>&#160;<span class="preprocessor">#pragma unroll</span></div>
<div class="line"><a name="l00173"></a><span class="lineno"> 173</span>&#160;<span class="preprocessor"></span> <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0; i &lt; kColLoad; ++i) {</div>
<div class="line"><a name="l00174"></a><span class="lineno"> 174</span>&#160; val[i] = input[col + i * blockDim.x];</div>
<div class="line"><a name="l00175"></a><span class="lineno"> 175</span>&#160; }</div>
<div class="line"><a name="l00176"></a><span class="lineno"> 176</span>&#160;</div>
<div class="line"><a name="l00177"></a><span class="lineno"> 177</span>&#160; <span class="keywordflow">if</span> (endRow) {</div>
<div class="line"><a name="l00178"></a><span class="lineno"> 178</span>&#160; <span class="keywordflow">for</span> (<span class="keywordtype">int</span> row = rowStart; row &lt; output.getSize(0); ++row) {</div>
<div class="line"><a name="l00179"></a><span class="lineno"> 179</span>&#160;<span class="preprocessor">#pragma unroll</span></div>
<div class="line"><a name="l00180"></a><span class="lineno"> 180</span>&#160;<span class="preprocessor"></span> <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0; i &lt; kColLoad; ++i) {</div>
<div class="line"><a name="l00181"></a><span class="lineno"> 181</span>&#160; output[row][col + i * blockDim.x] = val[i];</div>
<div class="line"><a name="l00182"></a><span class="lineno"> 182</span>&#160; }</div>
<div class="line"><a name="l00183"></a><span class="lineno"> 183</span>&#160; }</div>
<div class="line"><a name="l00184"></a><span class="lineno"> 184</span>&#160; } <span class="keywordflow">else</span> {</div>
<div class="line"><a name="l00185"></a><span class="lineno"> 185</span>&#160; <span class="keywordflow">for</span> (<span class="keywordtype">int</span> row = rowStart; row &lt; rowEnd; row += kRowUnroll) {</div>
<div class="line"><a name="l00186"></a><span class="lineno"> 186</span>&#160;<span class="preprocessor">#pragma unroll</span></div>
<div class="line"><a name="l00187"></a><span class="lineno"> 187</span>&#160;<span class="preprocessor"></span> <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = 0; i &lt; kRowUnroll; ++i) {</div>
<div class="line"><a name="l00188"></a><span class="lineno"> 188</span>&#160;<span class="preprocessor">#pragma unroll</span></div>
<div class="line"><a name="l00189"></a><span class="lineno"> 189</span>&#160;<span class="preprocessor"></span> <span class="keywordflow">for</span> (<span class="keywordtype">int</span> j = 0; j &lt; kColLoad; ++j) {</div>
<div class="line"><a name="l00190"></a><span class="lineno"> 190</span>&#160; output[row + i][col + j * blockDim.x] = val[j];</div>
<div class="line"><a name="l00191"></a><span class="lineno"> 191</span>&#160; }</div>
<div class="line"><a name="l00192"></a><span class="lineno"> 192</span>&#160; }</div>
<div class="line"><a name="l00193"></a><span class="lineno"> 193</span>&#160; }</div>
<div class="line"><a name="l00194"></a><span class="lineno"> 194</span>&#160; }</div>
<div class="line"><a name="l00195"></a><span class="lineno"> 195</span>&#160; }</div>
<div class="line"><a name="l00196"></a><span class="lineno"> 196</span>&#160;}</div>
<div class="line"><a name="l00197"></a><span class="lineno"> 197</span>&#160;</div>
<div class="line"><a name="l00198"></a><span class="lineno"> 198</span>&#160;<span class="keyword">template</span> &lt;<span class="keyword">typename</span> T, <span class="keywordtype">bool</span> ZeroClamp&gt;</div>
<div class="line"><a name="l00199"></a><span class="lineno"> 199</span>&#160;__global__ <span class="keywordtype">void</span> sumAlongRows(Tensor&lt;T, 1, true&gt; input,</div>
<div class="line"><a name="l00200"></a><span class="lineno"> 200</span>&#160; Tensor&lt;T, 2, true&gt; output) {</div>
<div class="line"><a name="l00201"></a><span class="lineno"> 201</span>&#160; __shared__ T sval;</div>
<div class="line"><a name="l00202"></a><span class="lineno"> 202</span>&#160;</div>
<div class="line"><a name="l00203"></a><span class="lineno"> 203</span>&#160; <span class="keywordtype">int</span> row = blockIdx.x;</div>
<div class="line"><a name="l00204"></a><span class="lineno"> 204</span>&#160;</div>
<div class="line"><a name="l00205"></a><span class="lineno"> 205</span>&#160; <span class="keywordflow">if</span> (threadIdx.x == 0) {</div>
<div class="line"><a name="l00206"></a><span class="lineno"> 206</span>&#160; sval = input[row];</div>
<div class="line"><a name="l00207"></a><span class="lineno"> 207</span>&#160; }</div>
<div class="line"><a name="l00208"></a><span class="lineno"> 208</span>&#160;</div>
<div class="line"><a name="l00209"></a><span class="lineno"> 209</span>&#160; __syncthreads();</div>
<div class="line"><a name="l00210"></a><span class="lineno"> 210</span>&#160;</div>
<div class="line"><a name="l00211"></a><span class="lineno"> 211</span>&#160; T val = sval;</div>
<div class="line"><a name="l00212"></a><span class="lineno"> 212</span>&#160;</div>
<div class="line"><a name="l00213"></a><span class="lineno"> 213</span>&#160; <span class="comment">// FIXME: speed up</span></div>
<div class="line"><a name="l00214"></a><span class="lineno"> 214</span>&#160; <span class="keywordflow">for</span> (<span class="keywordtype">int</span> i = threadIdx.x; i &lt; output.getSize(1); i += blockDim.x) {</div>
<div class="line"><a name="l00215"></a><span class="lineno"> 215</span>&#160; T out = output[row][i];</div>
<div class="line"><a name="l00216"></a><span class="lineno"> 216</span>&#160; out = Math&lt;T&gt;::add(out, val);</div>
<div class="line"><a name="l00217"></a><span class="lineno"> 217</span>&#160; out = Math&lt;T&gt;::lt(out, Math&lt;T&gt;::zero()) ? Math&lt;T&gt;::zero() : out;</div>
<div class="line"><a name="l00218"></a><span class="lineno"> 218</span>&#160;</div>
<div class="line"><a name="l00219"></a><span class="lineno"> 219</span>&#160; output[row][i] = out;</div>
<div class="line"><a name="l00220"></a><span class="lineno"> 220</span>&#160; }</div>
<div class="line"><a name="l00221"></a><span class="lineno"> 221</span>&#160;}</div>
<div class="line"><a name="l00222"></a><span class="lineno"> 222</span>&#160;</div>
<div class="line"><a name="l00223"></a><span class="lineno"> 223</span>&#160;<span class="keyword">template</span> &lt;<span class="keyword">typename</span> T, <span class="keyword">typename</span> TVec&gt;</div>
<div class="line"><a name="l00224"></a><span class="lineno"> 224</span>&#160;<span class="keywordtype">void</span> runSumAlongColumns(Tensor&lt;T, 1, true&gt;&amp; input,</div>
<div class="line"><a name="l00225"></a><span class="lineno"> 225</span>&#160; Tensor&lt;T, 2, true&gt;&amp; output,</div>
<div class="line"><a name="l00226"></a><span class="lineno"> 226</span>&#160; cudaStream_t stream) {</div>
<div class="line"><a name="l00227"></a><span class="lineno"> 227</span>&#160; FAISS_ASSERT(input.getSize(0) == output.getSize(1));</div>
<div class="line"><a name="l00228"></a><span class="lineno"> 228</span>&#160;</div>
<div class="line"><a name="l00229"></a><span class="lineno"> 229</span>&#160; <span class="keywordtype">int</span> threadsPerBlock = 256;</div>
<div class="line"><a name="l00230"></a><span class="lineno"> 230</span>&#160; constexpr <span class="keywordtype">int</span> kRowUnroll = 4;</div>
<div class="line"><a name="l00231"></a><span class="lineno"> 231</span>&#160; constexpr <span class="keywordtype">int</span> kRowsPerBlock = kRowUnroll * 4;</div>
<div class="line"><a name="l00232"></a><span class="lineno"> 232</span>&#160; constexpr <span class="keywordtype">int</span> kColLoad = 4;</div>
<div class="line"><a name="l00233"></a><span class="lineno"> 233</span>&#160;</div>
<div class="line"><a name="l00234"></a><span class="lineno"> 234</span>&#160; <span class="keyword">auto</span> block = dim3(threadsPerBlock);</div>
<div class="line"><a name="l00235"></a><span class="lineno"> 235</span>&#160;</div>
<div class="line"><a name="l00236"></a><span class="lineno"> 236</span>&#160; <span class="keywordflow">if</span> (input.template canCastResize&lt;TVec&gt;() &amp;&amp;</div>
<div class="line"><a name="l00237"></a><span class="lineno"> 237</span>&#160; output.template canCastResize&lt;TVec&gt;()) {</div>
<div class="line"><a name="l00238"></a><span class="lineno"> 238</span>&#160; <span class="keyword">auto</span> inputV = input.template castResize&lt;TVec&gt;();</div>
<div class="line"><a name="l00239"></a><span class="lineno"> 239</span>&#160; <span class="keyword">auto</span> outputV = output.template castResize&lt;TVec&gt;();</div>
<div class="line"><a name="l00240"></a><span class="lineno"> 240</span>&#160;</div>
<div class="line"><a name="l00241"></a><span class="lineno"> 241</span>&#160; <span class="keyword">auto</span> grid =</div>
<div class="line"><a name="l00242"></a><span class="lineno"> 242</span>&#160; dim3(utils::divUp(outputV.getSize(0), kRowsPerBlock),</div>
<div class="line"><a name="l00243"></a><span class="lineno"> 243</span>&#160; utils::divUp(outputV.getSize(1), threadsPerBlock * kColLoad));</div>
<div class="line"><a name="l00244"></a><span class="lineno"> 244</span>&#160;</div>
<div class="line"><a name="l00245"></a><span class="lineno"> 245</span>&#160; sumAlongColumns&lt;TVec, kRowsPerBlock, kRowUnroll, kColLoad&gt;</div>
<div class="line"><a name="l00246"></a><span class="lineno"> 246</span>&#160; &lt;&lt;&lt;grid, block, 0, stream&gt;&gt;&gt;(inputV, outputV);</div>
<div class="line"><a name="l00247"></a><span class="lineno"> 247</span>&#160; } <span class="keywordflow">else</span> {</div>
<div class="line"><a name="l00248"></a><span class="lineno"> 248</span>&#160; <span class="keyword">auto</span> grid =</div>
<div class="line"><a name="l00249"></a><span class="lineno"> 249</span>&#160; dim3(utils::divUp(output.getSize(0), kRowsPerBlock),</div>
<div class="line"><a name="l00250"></a><span class="lineno"> 250</span>&#160; utils::divUp(output.getSize(1), threadsPerBlock * kColLoad));</div>
<div class="line"><a name="l00251"></a><span class="lineno"> 251</span>&#160;</div>
<div class="line"><a name="l00252"></a><span class="lineno"> 252</span>&#160; sumAlongColumns&lt;T, kRowsPerBlock, kRowUnroll, kColLoad&gt;</div>
<div class="line"><a name="l00253"></a><span class="lineno"> 253</span>&#160; &lt;&lt;&lt;grid, block, 0, stream&gt;&gt;&gt;(input, output);</div>
<div class="line"><a name="l00254"></a><span class="lineno"> 254</span>&#160; }</div>
<div class="line"><a name="l00255"></a><span class="lineno"> 255</span>&#160;</div>
<div class="line"><a name="l00256"></a><span class="lineno"> 256</span>&#160; CUDA_TEST_ERROR();</div>
<div class="line"><a name="l00257"></a><span class="lineno"> 257</span>&#160;}</div>
<div class="line"><a name="l00258"></a><span class="lineno"> 258</span>&#160;</div>
<div class="line"><a name="l00259"></a><span class="lineno"> 259</span>&#160;<span class="keywordtype">void</span> runSumAlongColumns(Tensor&lt;float, 1, true&gt;&amp; input,</div>
<div class="line"><a name="l00260"></a><span class="lineno"> 260</span>&#160; Tensor&lt;float, 2, true&gt;&amp; output,</div>
<div class="line"><a name="l00261"></a><span class="lineno"> 261</span>&#160; cudaStream_t stream) {</div>
<div class="line"><a name="l00262"></a><span class="lineno"> 262</span>&#160; runSumAlongColumns&lt;float, float4&gt;(input, output, stream);</div>
<div class="line"><a name="l00263"></a><span class="lineno"> 263</span>&#160;}</div>
<div class="line"><a name="l00264"></a><span class="lineno"> 264</span>&#160;</div>
<div class="line"><a name="l00265"></a><span class="lineno"> 265</span>&#160;<span class="preprocessor">#ifdef FAISS_USE_FLOAT16</span></div>
<div class="line"><a name="l00266"></a><span class="lineno"> 266</span>&#160;<span class="preprocessor"></span><span class="keywordtype">void</span> runSumAlongColumns(Tensor&lt;half, 1, true&gt;&amp; input,</div>
<div class="line"><a name="l00267"></a><span class="lineno"> 267</span>&#160; Tensor&lt;half, 2, true&gt;&amp; output,</div>
<div class="line"><a name="l00268"></a><span class="lineno"> 268</span>&#160; cudaStream_t stream) {</div>
<div class="line"><a name="l00269"></a><span class="lineno"> 269</span>&#160; runSumAlongColumns&lt;half, half2&gt;(input, output, stream);</div>
<div class="line"><a name="l00270"></a><span class="lineno"> 270</span>&#160;}</div>
<div class="line"><a name="l00271"></a><span class="lineno"> 271</span>&#160;<span class="preprocessor">#endif</span></div>
<div class="line"><a name="l00272"></a><span class="lineno"> 272</span>&#160;<span class="preprocessor"></span></div>
<div class="line"><a name="l00273"></a><span class="lineno"> 273</span>&#160;<span class="keyword">template</span> &lt;<span class="keyword">typename</span> T, <span class="keyword">typename</span> TVec&gt;</div>
<div class="line"><a name="l00274"></a><span class="lineno"> 274</span>&#160;<span class="keywordtype">void</span> runAssignAlongColumns(Tensor&lt;T, 1, true&gt;&amp; input,</div>
<div class="line"><a name="l00275"></a><span class="lineno"> 275</span>&#160; Tensor&lt;T, 2, true&gt;&amp; output,</div>
<div class="line"><a name="l00276"></a><span class="lineno"> 276</span>&#160; cudaStream_t stream) {</div>
<div class="line"><a name="l00277"></a><span class="lineno"> 277</span>&#160; FAISS_ASSERT(input.getSize(0) == output.getSize(1));</div>
<div class="line"><a name="l00278"></a><span class="lineno"> 278</span>&#160;</div>
<div class="line"><a name="l00279"></a><span class="lineno"> 279</span>&#160; <span class="keywordtype">int</span> threadsPerBlock = 256;</div>
<div class="line"><a name="l00280"></a><span class="lineno"> 280</span>&#160; constexpr <span class="keywordtype">int</span> kRowUnroll = 4;</div>
<div class="line"><a name="l00281"></a><span class="lineno"> 281</span>&#160; constexpr <span class="keywordtype">int</span> kRowsPerBlock = kRowUnroll * 4;</div>
<div class="line"><a name="l00282"></a><span class="lineno"> 282</span>&#160; constexpr <span class="keywordtype">int</span> kColLoad = 4;</div>
<div class="line"><a name="l00283"></a><span class="lineno"> 283</span>&#160;</div>
<div class="line"><a name="l00284"></a><span class="lineno"> 284</span>&#160; <span class="keyword">auto</span> block = dim3(threadsPerBlock);</div>
<div class="line"><a name="l00285"></a><span class="lineno"> 285</span>&#160;</div>
<div class="line"><a name="l00286"></a><span class="lineno"> 286</span>&#160; <span class="keywordflow">if</span> (input.template canCastResize&lt;TVec&gt;() &amp;&amp;</div>
<div class="line"><a name="l00287"></a><span class="lineno"> 287</span>&#160; output.template canCastResize&lt;TVec&gt;()) {</div>
<div class="line"><a name="l00288"></a><span class="lineno"> 288</span>&#160; <span class="keyword">auto</span> inputV = input.template castResize&lt;TVec&gt;();</div>
<div class="line"><a name="l00289"></a><span class="lineno"> 289</span>&#160; <span class="keyword">auto</span> outputV = output.template castResize&lt;TVec&gt;();</div>
<div class="line"><a name="l00290"></a><span class="lineno"> 290</span>&#160;</div>
<div class="line"><a name="l00291"></a><span class="lineno"> 291</span>&#160; <span class="keyword">auto</span> grid =</div>
<div class="line"><a name="l00292"></a><span class="lineno"> 292</span>&#160; dim3(utils::divUp(outputV.getSize(0), kRowsPerBlock),</div>
<div class="line"><a name="l00293"></a><span class="lineno"> 293</span>&#160; utils::divUp(outputV.getSize(1), threadsPerBlock * kColLoad));</div>
<div class="line"><a name="l00294"></a><span class="lineno"> 294</span>&#160;</div>
<div class="line"><a name="l00295"></a><span class="lineno"> 295</span>&#160; assignAlongColumns&lt;TVec, kRowsPerBlock, kRowUnroll, kColLoad&gt;</div>
<div class="line"><a name="l00296"></a><span class="lineno"> 296</span>&#160; &lt;&lt;&lt;grid, block, 0, stream&gt;&gt;&gt;(inputV, outputV);</div>
<div class="line"><a name="l00297"></a><span class="lineno"> 297</span>&#160; } <span class="keywordflow">else</span> {</div>
<div class="line"><a name="l00298"></a><span class="lineno"> 298</span>&#160; <span class="keyword">auto</span> grid =</div>
<div class="line"><a name="l00299"></a><span class="lineno"> 299</span>&#160; dim3(utils::divUp(output.getSize(0), kRowsPerBlock),</div>
<div class="line"><a name="l00300"></a><span class="lineno"> 300</span>&#160; utils::divUp(output.getSize(1), threadsPerBlock * kColLoad));</div>
<div class="line"><a name="l00301"></a><span class="lineno"> 301</span>&#160;</div>
<div class="line"><a name="l00302"></a><span class="lineno"> 302</span>&#160; assignAlongColumns&lt;T, kRowsPerBlock, kRowUnroll, kColLoad&gt;</div>
<div class="line"><a name="l00303"></a><span class="lineno"> 303</span>&#160; &lt;&lt;&lt;grid, block, 0, stream&gt;&gt;&gt;(input, output);</div>
<div class="line"><a name="l00304"></a><span class="lineno"> 304</span>&#160; }</div>
<div class="line"><a name="l00305"></a><span class="lineno"> 305</span>&#160;</div>
<div class="line"><a name="l00306"></a><span class="lineno"> 306</span>&#160; CUDA_TEST_ERROR();</div>
<div class="line"><a name="l00307"></a><span class="lineno"> 307</span>&#160;}</div>
<div class="line"><a name="l00308"></a><span class="lineno"> 308</span>&#160;</div>
<div class="line"><a name="l00309"></a><span class="lineno"> 309</span>&#160;<span class="keywordtype">void</span> runAssignAlongColumns(Tensor&lt;float, 1, true&gt;&amp; input,</div>
<div class="line"><a name="l00310"></a><span class="lineno"> 310</span>&#160; Tensor&lt;float, 2, true&gt;&amp; output,</div>
<div class="line"><a name="l00311"></a><span class="lineno"> 311</span>&#160; cudaStream_t stream) {</div>
<div class="line"><a name="l00312"></a><span class="lineno"> 312</span>&#160; runAssignAlongColumns&lt;float, float4&gt;(input, output, stream);</div>
<div class="line"><a name="l00313"></a><span class="lineno"> 313</span>&#160;}</div>
<div class="line"><a name="l00314"></a><span class="lineno"> 314</span>&#160;</div>
<div class="line"><a name="l00315"></a><span class="lineno"> 315</span>&#160;<span class="preprocessor">#ifdef FAISS_USE_FLOAT16</span></div>
<div class="line"><a name="l00316"></a><span class="lineno"> 316</span>&#160;<span class="preprocessor"></span><span class="keywordtype">void</span> runAssignAlongColumns(Tensor&lt;half, 1, true&gt;&amp; input,</div>
<div class="line"><a name="l00317"></a><span class="lineno"> 317</span>&#160; Tensor&lt;half, 2, true&gt;&amp; output,</div>
<div class="line"><a name="l00318"></a><span class="lineno"> 318</span>&#160; cudaStream_t stream) {</div>
<div class="line"><a name="l00319"></a><span class="lineno"> 319</span>&#160; runAssignAlongColumns&lt;half, half2&gt;(input, output, stream);</div>
<div class="line"><a name="l00320"></a><span class="lineno"> 320</span>&#160;}</div>
<div class="line"><a name="l00321"></a><span class="lineno"> 321</span>&#160;<span class="preprocessor">#endif</span></div>
<div class="line"><a name="l00322"></a><span class="lineno"> 322</span>&#160;<span class="preprocessor"></span></div>
<div class="line"><a name="l00323"></a><span class="lineno"> 323</span>&#160;<span class="keyword">template</span> &lt;<span class="keyword">typename</span> T&gt;</div>
<div class="line"><a name="l00324"></a><span class="lineno"> 324</span>&#160;<span class="keywordtype">void</span> runSumAlongRows(Tensor&lt;T, 1, true&gt;&amp; input,</div>
<div class="line"><a name="l00325"></a><span class="lineno"> 325</span>&#160; Tensor&lt;T, 2, true&gt;&amp; output,</div>
<div class="line"><a name="l00326"></a><span class="lineno"> 326</span>&#160; <span class="keywordtype">bool</span> zeroClamp,</div>
<div class="line"><a name="l00327"></a><span class="lineno"> 327</span>&#160; cudaStream_t stream) {</div>
<div class="line"><a name="l00328"></a><span class="lineno"> 328</span>&#160; FAISS_ASSERT(input.getSize(0) == output.getSize(0));</div>
<div class="line"><a name="l00329"></a><span class="lineno"> 329</span>&#160;</div>
<div class="line"><a name="l00330"></a><span class="lineno"> 330</span>&#160; <span class="keywordtype">int</span> threadsPerBlock =</div>
<div class="line"><a name="l00331"></a><span class="lineno"> 331</span>&#160; std::min(output.getSize(1), getMaxThreadsCurrentDevice());</div>
<div class="line"><a name="l00332"></a><span class="lineno"> 332</span>&#160; <span class="keyword">auto</span> grid = dim3(output.getSize(0));</div>
<div class="line"><a name="l00333"></a><span class="lineno"> 333</span>&#160; <span class="keyword">auto</span> block = dim3(threadsPerBlock);</div>
<div class="line"><a name="l00334"></a><span class="lineno"> 334</span>&#160;</div>
<div class="line"><a name="l00335"></a><span class="lineno"> 335</span>&#160; <span class="keywordflow">if</span> (zeroClamp) {</div>
<div class="line"><a name="l00336"></a><span class="lineno"> 336</span>&#160; sumAlongRows&lt;T, true&gt;&lt;&lt;&lt;grid, block, 0, stream&gt;&gt;&gt;(input, output);</div>
<div class="line"><a name="l00337"></a><span class="lineno"> 337</span>&#160; } <span class="keywordflow">else</span> {</div>
<div class="line"><a name="l00338"></a><span class="lineno"> 338</span>&#160; sumAlongRows&lt;T, false&gt;&lt;&lt;&lt;grid, block, 0, stream&gt;&gt;&gt;(input, output);</div>
<div class="line"><a name="l00339"></a><span class="lineno"> 339</span>&#160; }</div>
<div class="line"><a name="l00340"></a><span class="lineno"> 340</span>&#160;</div>
<div class="line"><a name="l00341"></a><span class="lineno"> 341</span>&#160; CUDA_TEST_ERROR();</div>
<div class="line"><a name="l00342"></a><span class="lineno"> 342</span>&#160;}</div>
<div class="line"><a name="l00343"></a><span class="lineno"> 343</span>&#160;</div>
<div class="line"><a name="l00344"></a><span class="lineno"> 344</span>&#160;<span class="keywordtype">void</span> runSumAlongRows(Tensor&lt;float, 1, true&gt;&amp; input,</div>
<div class="line"><a name="l00345"></a><span class="lineno"> 345</span>&#160; Tensor&lt;float, 2, true&gt;&amp; output,</div>
<div class="line"><a name="l00346"></a><span class="lineno"> 346</span>&#160; <span class="keywordtype">bool</span> zeroClamp,</div>
<div class="line"><a name="l00347"></a><span class="lineno"> 347</span>&#160; cudaStream_t stream) {</div>
<div class="line"><a name="l00348"></a><span class="lineno"> 348</span>&#160; runSumAlongRows&lt;float&gt;(input, output, zeroClamp, stream);</div>
<div class="line"><a name="l00349"></a><span class="lineno"> 349</span>&#160;}</div>
<div class="line"><a name="l00350"></a><span class="lineno"> 350</span>&#160;</div>
<div class="line"><a name="l00351"></a><span class="lineno"> 351</span>&#160;<span class="preprocessor">#ifdef FAISS_USE_FLOAT16</span></div>
<div class="line"><a name="l00352"></a><span class="lineno"> 352</span>&#160;<span class="preprocessor"></span><span class="keywordtype">void</span> runSumAlongRows(Tensor&lt;half, 1, true&gt;&amp; input,</div>
<div class="line"><a name="l00353"></a><span class="lineno"> 353</span>&#160; Tensor&lt;half, 2, true&gt;&amp; output,</div>
<div class="line"><a name="l00354"></a><span class="lineno"> 354</span>&#160; <span class="keywordtype">bool</span> zeroClamp,</div>
<div class="line"><a name="l00355"></a><span class="lineno"> 355</span>&#160; cudaStream_t stream) {</div>
<div class="line"><a name="l00356"></a><span class="lineno"> 356</span>&#160; runSumAlongRows&lt;half&gt;(input, output, zeroClamp, stream);</div>
<div class="line"><a name="l00357"></a><span class="lineno"> 357</span>&#160;}</div>
<div class="line"><a name="l00358"></a><span class="lineno"> 358</span>&#160;<span class="preprocessor">#endif</span></div>
<div class="line"><a name="l00359"></a><span class="lineno"> 359</span>&#160;<span class="preprocessor"></span></div>
<div class="line"><a name="l00360"></a><span class="lineno"> 360</span>&#160;} } <span class="comment">// namespace</span></div>
</div><!-- fragment --></div><!-- contents -->
<!-- start footer part -->
<hr class="footer"/><address class="footer"><small>
Generated by &#160;<a href="http://www.doxygen.org/index.html">
<img class="footer" src="doxygen.png" alt="doxygen"/>
</a> 1.8.5
</small></address>
</body>
</html>