mirror of
https://github.com/facebookresearch/faiss.git
synced 2025-06-03 21:54:02 +08:00
various bugfixes from github issues kmean with some frozen centroids GPU better tiling for large flat datasets default AVX for vector ops
493 lines
16 KiB
Plaintext
493 lines
16 KiB
Plaintext
/**
|
|
* Copyright (c) 2015-present, Facebook, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This source code is licensed under the BSD+Patents license found in the
|
|
* LICENSE file in the root directory of this source tree.
|
|
*/
|
|
|
|
// Copyright 2004-present Facebook. All Rights Reserved.
|
|
|
|
#include "Distance.cuh"
|
|
#include "BroadcastSum.cuh"
|
|
#include "L2Norm.cuh"
|
|
#include "L2Select.cuh"
|
|
#include "../../FaissAssert.h"
|
|
#include "../GpuResources.h"
|
|
#include "../utils/DeviceUtils.h"
|
|
#include "../utils/Limits.cuh"
|
|
#include "../utils/MatrixMult.cuh"
|
|
#include "../utils/BlockSelectKernel.cuh"
|
|
|
|
#include <memory>
|
|
#include <thrust/fill.h>
|
|
#include <thrust/for_each.h>
|
|
#include <thrust/device_ptr.h>
|
|
#include <thrust/execution_policy.h>
|
|
|
|
namespace faiss { namespace gpu {
|
|
|
|
namespace {
|
|
|
|
template <typename T>
|
|
Tensor<T, 2, true> sliceCentroids(Tensor<T, 2, true>& centroids,
|
|
Tensor<T, 2, true>* centroidsTransposed,
|
|
int startCentroid,
|
|
int num) {
|
|
if (startCentroid == 0 && num == centroids.getSize(0)) {
|
|
if (centroidsTransposed) {
|
|
return *centroidsTransposed;
|
|
} else {
|
|
return centroids;
|
|
}
|
|
}
|
|
|
|
if (centroidsTransposed) {
|
|
// (dim, num)
|
|
return centroidsTransposed->narrow(1, startCentroid, num);
|
|
} else {
|
|
return centroids.narrow(0, startCentroid, num);
|
|
}
|
|
}
|
|
|
|
// For each chunk of k indices, increment the index by chunk * increment
|
|
template <typename T>
|
|
__global__ void incrementIndex(Tensor<T, 2, true> indices,
|
|
int k,
|
|
int increment) {
|
|
for (int i = threadIdx.x; i < k; i += blockDim.x) {
|
|
indices[blockIdx.y][blockIdx.x * k + i] += blockIdx.x * increment;
|
|
}
|
|
}
|
|
|
|
// Used to update result indices in distance computation where the number of
|
|
// centroids is high, and is tiled
|
|
template <typename T>
|
|
void runIncrementIndex(Tensor<T, 2, true>& indices,
|
|
int k,
|
|
int increment,
|
|
cudaStream_t stream) {
|
|
dim3 grid(indices.getSize(1) / k, indices.getSize(0));
|
|
int block = std::min(k, 512);
|
|
|
|
// should be exact
|
|
FAISS_ASSERT(grid.x * k == indices.getSize(1));
|
|
|
|
incrementIndex<<<grid, block, 0, stream>>>(indices, k, increment);
|
|
|
|
cudaDeviceSynchronize();
|
|
}
|
|
|
|
// If the inner size (dim) of the vectors is small, we want a larger query tile
|
|
// size, like 1024
|
|
|
|
void chooseTileSize(int numQueries,
|
|
int numCentroids,
|
|
int dim,
|
|
int elementSize,
|
|
size_t tempMemAvailable,
|
|
int& tileRows,
|
|
int& tileCols) {
|
|
// The matrix multiplication should be large enough to be efficient, but if it
|
|
// is too large, we seem to lose efficiency as opposed to double-streaming.
|
|
// Each tile size here defines 1/2 of the memory use due to double streaming.
|
|
// We ignore available temporary memory, as that is adjusted independently by
|
|
// the user and can thus meet these requirements (or not).
|
|
// For <= 4 GB GPUs, prefer 512 MB of usage.
|
|
// For <= 8 GB GPUs, prefer 768 MB of usage.
|
|
// Otherwise, prefer 1 GB of usage.
|
|
auto totalMem = getCurrentDeviceProperties().totalGlobalMem;
|
|
|
|
int targetUsage = 0;
|
|
|
|
if (totalMem <= ((size_t) 4) * 1024 * 1024 * 1024) {
|
|
targetUsage = 512 * 1024 * 1024;
|
|
} else if (totalMem <= ((size_t) 8) * 1024 * 1024 * 1024) {
|
|
targetUsage = 768 * 1024 * 1024;
|
|
} else {
|
|
targetUsage = 1024 * 1024 * 1024;
|
|
}
|
|
|
|
targetUsage /= 2 * elementSize;
|
|
|
|
// 512 seems to be a batch size sweetspot for float32.
|
|
// If we are on float16, increase to 512.
|
|
// If the k size (vec dim) of the matrix multiplication is small (<= 32),
|
|
// increase to 1024.
|
|
int preferredTileRows = 512;
|
|
if (dim <= 32) {
|
|
preferredTileRows = 1024;
|
|
}
|
|
|
|
tileRows = std::min(preferredTileRows, numQueries);
|
|
|
|
// tileCols is the remainder size
|
|
tileCols = std::min(targetUsage / preferredTileRows, numCentroids);
|
|
}
|
|
|
|
}
|
|
|
|
template <typename T>
|
|
void runDistance(bool computeL2,
|
|
GpuResources* resources,
|
|
Tensor<T, 2, true>& centroids,
|
|
Tensor<T, 2, true>* centroidsTransposed,
|
|
Tensor<T, 1, true>* centroidNorms,
|
|
Tensor<T, 2, true>& queries,
|
|
int k,
|
|
Tensor<T, 2, true>& outDistances,
|
|
Tensor<int, 2, true>& outIndices,
|
|
bool useHgemm,
|
|
bool ignoreOutDistances) {
|
|
FAISS_ASSERT(outDistances.getSize(0) == queries.getSize(0));
|
|
FAISS_ASSERT(outIndices.getSize(0) == queries.getSize(0));
|
|
FAISS_ASSERT(outDistances.getSize(1) == k);
|
|
FAISS_ASSERT(outIndices.getSize(1) == k);
|
|
|
|
auto& mem = resources->getMemoryManagerCurrentDevice();
|
|
auto defaultStream = resources->getDefaultStreamCurrentDevice();
|
|
|
|
// If we're quering against a 0 sized set, just return empty results
|
|
if (centroids.numElements() == 0) {
|
|
thrust::fill(thrust::cuda::par.on(defaultStream),
|
|
outDistances.data(), outDistances.end(),
|
|
Limits<T>::getMax());
|
|
|
|
thrust::fill(thrust::cuda::par.on(defaultStream),
|
|
outIndices.data(), outIndices.end(),
|
|
-1);
|
|
|
|
return;
|
|
}
|
|
|
|
// L2: If ||c||^2 is not pre-computed, calculate it
|
|
DeviceTensor<T, 1, true> cNorms;
|
|
if (computeL2 && !centroidNorms) {
|
|
cNorms = std::move(DeviceTensor<T, 1, true>(
|
|
mem,
|
|
{centroids.getSize(0)}, defaultStream));
|
|
runL2Norm(centroids, cNorms, true, defaultStream);
|
|
centroidNorms = &cNorms;
|
|
}
|
|
|
|
//
|
|
// Prepare norm vector ||q||^2; ||c||^2 is already pre-computed
|
|
//
|
|
int qNormSize[1] = {queries.getSize(0)};
|
|
DeviceTensor<T, 1, true> queryNorms(mem, qNormSize, defaultStream);
|
|
|
|
// ||q||^2
|
|
if (computeL2) {
|
|
runL2Norm(queries, queryNorms, true, defaultStream);
|
|
}
|
|
|
|
// By default, aim to use up to 512 MB of memory for the processing, with both
|
|
// number of queries and number of centroids being at least 512.
|
|
int tileRows = 0;
|
|
int tileCols = 0;
|
|
chooseTileSize(queries.getSize(0),
|
|
centroids.getSize(0),
|
|
queries.getSize(1),
|
|
sizeof(T),
|
|
mem.getSizeAvailable(),
|
|
tileRows,
|
|
tileCols);
|
|
|
|
int numColTiles = utils::divUp(centroids.getSize(0), tileCols);
|
|
|
|
FAISS_ASSERT(k <= centroids.getSize(0));
|
|
FAISS_ASSERT(k <= 1024); // select limitation
|
|
|
|
// Temporary output memory space we'll use
|
|
DeviceTensor<T, 2, true> distanceBuf1(
|
|
mem, {tileRows, tileCols}, defaultStream);
|
|
DeviceTensor<T, 2, true> distanceBuf2(
|
|
mem, {tileRows, tileCols}, defaultStream);
|
|
DeviceTensor<T, 2, true>* distanceBufs[2] =
|
|
{&distanceBuf1, &distanceBuf2};
|
|
|
|
DeviceTensor<T, 2, true> outDistanceBuf1(
|
|
mem, {tileRows, numColTiles * k}, defaultStream);
|
|
DeviceTensor<T, 2, true> outDistanceBuf2(
|
|
mem, {tileRows, numColTiles * k}, defaultStream);
|
|
DeviceTensor<T, 2, true>* outDistanceBufs[2] =
|
|
{&outDistanceBuf1, &outDistanceBuf2};
|
|
|
|
DeviceTensor<int, 2, true> outIndexBuf1(
|
|
mem, {tileRows, numColTiles * k}, defaultStream);
|
|
DeviceTensor<int, 2, true> outIndexBuf2(
|
|
mem, {tileRows, numColTiles * k}, defaultStream);
|
|
DeviceTensor<int, 2, true>* outIndexBufs[2] =
|
|
{&outIndexBuf1, &outIndexBuf2};
|
|
|
|
auto streams = resources->getAlternateStreamsCurrentDevice();
|
|
streamWait(streams, {defaultStream});
|
|
|
|
int curStream = 0;
|
|
|
|
// Tile over the input queries
|
|
for (int i = 0; i < queries.getSize(0); i += tileRows) {
|
|
int curQuerySize = std::min(tileRows, queries.getSize(0) - i);
|
|
|
|
auto outDistanceView =
|
|
outDistances.narrow(0, i, curQuerySize);
|
|
auto outIndexView =
|
|
outIndices.narrow(0, i, curQuerySize);
|
|
|
|
auto queryView =
|
|
queries.narrow(0, i, curQuerySize);
|
|
auto queryNormNiew =
|
|
queryNorms.narrow(0, i, curQuerySize);
|
|
|
|
auto outDistanceBufRowView =
|
|
outDistanceBufs[curStream]->narrow(0, 0, curQuerySize);
|
|
auto outIndexBufRowView =
|
|
outIndexBufs[curStream]->narrow(0, 0, curQuerySize);
|
|
|
|
// Tile over the centroids
|
|
for (int j = 0; j < centroids.getSize(0); j += tileCols) {
|
|
int curCentroidSize = std::min(tileCols, centroids.getSize(0) - j);
|
|
|
|
int curColTile = j / tileCols;
|
|
|
|
auto centroidsView =
|
|
sliceCentroids(centroids, centroidsTransposed, j, curCentroidSize);
|
|
|
|
auto distanceBufView = distanceBufs[curStream]->
|
|
narrow(0, 0, curQuerySize).narrow(1, 0, curCentroidSize);
|
|
|
|
auto outDistanceBufColView =
|
|
outDistanceBufRowView.narrow(1, k * curColTile, k);
|
|
auto outIndexBufColView =
|
|
outIndexBufRowView.narrow(1, k * curColTile, k);
|
|
|
|
// L2: distance is ||c||^2 - 2qc + ||q||^2, we compute -2qc
|
|
// IP: just compute qc
|
|
// (query id x dim) x (centroid id, dim)' = (query id, centroid id)
|
|
runMatrixMult(distanceBufView, false,
|
|
queryView, false,
|
|
centroidsView,
|
|
centroidsTransposed ? false : true,
|
|
computeL2 ? -2.0f : 1.0f, 0.0f, useHgemm,
|
|
resources->getBlasHandleCurrentDevice(),
|
|
streams[curStream]);
|
|
|
|
if (computeL2) {
|
|
// For L2 distance, we use this fused kernel that performs both
|
|
// adding ||c||^2 to -2qc and k-selection, so we only need two
|
|
// passes (one write by the gemm, one read here) over the huge
|
|
// region of output memory
|
|
//
|
|
// If we aren't tiling along the number of centroids, we can perform the
|
|
// output work directly
|
|
if (tileCols == centroids.getSize(0)) {
|
|
// Write into the final output
|
|
runL2SelectMin(distanceBufView,
|
|
*centroidNorms,
|
|
outDistanceView,
|
|
outIndexView,
|
|
k,
|
|
streams[curStream]);
|
|
|
|
if (!ignoreOutDistances) {
|
|
// expand (query id) to (query id, k) by duplicating along rows
|
|
// top-k ||c||^2 - 2qc + ||q||^2 in the form (query id, k)
|
|
runSumAlongRows(queryNormNiew, outDistanceView, streams[curStream]);
|
|
}
|
|
} else {
|
|
auto centroidNormsView =
|
|
centroidNorms->narrow(0, j, curCentroidSize);
|
|
|
|
// Write into our intermediate output
|
|
runL2SelectMin(distanceBufView,
|
|
centroidNormsView,
|
|
outDistanceBufColView,
|
|
outIndexBufColView,
|
|
k,
|
|
streams[curStream]);
|
|
|
|
if (!ignoreOutDistances) {
|
|
// expand (query id) to (query id, k) by duplicating along rows
|
|
// top-k ||c||^2 - 2qc + ||q||^2 in the form (query id, k)
|
|
runSumAlongRows(queryNormNiew,
|
|
outDistanceBufColView,
|
|
streams[curStream]);
|
|
}
|
|
}
|
|
} else {
|
|
// For IP, just k-select the output for this tile
|
|
if (tileCols == centroids.getSize(0)) {
|
|
// Write into the final output
|
|
runBlockSelect(distanceBufView,
|
|
outDistanceView,
|
|
outIndexView,
|
|
true, k, streams[curStream]);
|
|
} else {
|
|
// Write into the intermediate output
|
|
runBlockSelect(distanceBufView,
|
|
outDistanceBufColView,
|
|
outIndexBufColView,
|
|
true, k, streams[curStream]);
|
|
}
|
|
}
|
|
}
|
|
|
|
// As we're finished with processing a full set of centroids, perform the
|
|
// final k-selection
|
|
if (tileCols != centroids.getSize(0)) {
|
|
// The indices are tile-relative; for each tile of k, we need to add
|
|
// tileCols to the index
|
|
runIncrementIndex(outIndexBufRowView, k, tileCols, streams[curStream]);
|
|
|
|
runBlockSelectPair(outDistanceBufRowView,
|
|
outIndexBufRowView,
|
|
outDistanceView,
|
|
outIndexView,
|
|
computeL2 ? false : true, k, streams[curStream]);
|
|
}
|
|
|
|
curStream = (curStream + 1) % 2;
|
|
}
|
|
|
|
// Have the desired ordering stream wait on the multi-stream
|
|
streamWait({defaultStream}, streams);
|
|
}
|
|
|
|
template <typename T>
|
|
void runL2Distance(GpuResources* resources,
|
|
Tensor<T, 2, true>& centroids,
|
|
Tensor<T, 2, true>* centroidsTransposed,
|
|
Tensor<T, 1, true>* centroidNorms,
|
|
Tensor<T, 2, true>& queries,
|
|
int k,
|
|
Tensor<T, 2, true>& outDistances,
|
|
Tensor<int, 2, true>& outIndices,
|
|
bool useHgemm,
|
|
bool ignoreOutDistances = false) {
|
|
runDistance<T>(true, // L2
|
|
resources,
|
|
centroids,
|
|
centroidsTransposed,
|
|
centroidNorms,
|
|
queries,
|
|
k,
|
|
outDistances,
|
|
outIndices,
|
|
useHgemm,
|
|
ignoreOutDistances);
|
|
}
|
|
|
|
template <typename T>
|
|
void runIPDistance(GpuResources* resources,
|
|
Tensor<T, 2, true>& centroids,
|
|
Tensor<T, 2, true>* centroidsTransposed,
|
|
Tensor<T, 2, true>& queries,
|
|
int k,
|
|
Tensor<T, 2, true>& outDistances,
|
|
Tensor<int, 2, true>& outIndices,
|
|
bool useHgemm) {
|
|
runDistance<T>(false, // IP
|
|
resources,
|
|
centroids,
|
|
centroidsTransposed,
|
|
nullptr,
|
|
queries,
|
|
k,
|
|
outDistances,
|
|
outIndices,
|
|
useHgemm,
|
|
false);
|
|
}
|
|
|
|
//
|
|
// Instantiations of the distance templates
|
|
//
|
|
|
|
void
|
|
runIPDistance(GpuResources* resources,
|
|
Tensor<float, 2, true>& vectors,
|
|
Tensor<float, 2, true>* vectorsTransposed,
|
|
Tensor<float, 2, true>& queries,
|
|
int k,
|
|
Tensor<float, 2, true>& outDistances,
|
|
Tensor<int, 2, true>& outIndices) {
|
|
runIPDistance<float>(resources,
|
|
vectors,
|
|
vectorsTransposed,
|
|
queries,
|
|
k,
|
|
outDistances,
|
|
outIndices,
|
|
false);
|
|
}
|
|
|
|
#ifdef FAISS_USE_FLOAT16
|
|
void
|
|
runIPDistance(GpuResources* resources,
|
|
Tensor<half, 2, true>& vectors,
|
|
Tensor<half, 2, true>* vectorsTransposed,
|
|
Tensor<half, 2, true>& queries,
|
|
int k,
|
|
Tensor<half, 2, true>& outDistances,
|
|
Tensor<int, 2, true>& outIndices,
|
|
bool useHgemm) {
|
|
runIPDistance<half>(resources,
|
|
vectors,
|
|
vectorsTransposed,
|
|
queries,
|
|
k,
|
|
outDistances,
|
|
outIndices,
|
|
useHgemm);
|
|
}
|
|
#endif
|
|
|
|
void
|
|
runL2Distance(GpuResources* resources,
|
|
Tensor<float, 2, true>& vectors,
|
|
Tensor<float, 2, true>* vectorsTransposed,
|
|
Tensor<float, 1, true>* vectorNorms,
|
|
Tensor<float, 2, true>& queries,
|
|
int k,
|
|
Tensor<float, 2, true>& outDistances,
|
|
Tensor<int, 2, true>& outIndices,
|
|
bool ignoreOutDistances) {
|
|
runL2Distance<float>(resources,
|
|
vectors,
|
|
vectorsTransposed,
|
|
vectorNorms,
|
|
queries,
|
|
k,
|
|
outDistances,
|
|
outIndices,
|
|
false,
|
|
ignoreOutDistances);
|
|
}
|
|
|
|
#ifdef FAISS_USE_FLOAT16
|
|
void
|
|
runL2Distance(GpuResources* resources,
|
|
Tensor<half, 2, true>& vectors,
|
|
Tensor<half, 2, true>* vectorsTransposed,
|
|
Tensor<half, 1, true>* vectorNorms,
|
|
Tensor<half, 2, true>& queries,
|
|
int k,
|
|
Tensor<half, 2, true>& outDistances,
|
|
Tensor<int, 2, true>& outIndices,
|
|
bool useHgemm,
|
|
bool ignoreOutDistances) {
|
|
runL2Distance<half>(resources,
|
|
vectors,
|
|
vectorsTransposed,
|
|
vectorNorms,
|
|
queries,
|
|
k,
|
|
outDistances,
|
|
outIndices,
|
|
useHgemm,
|
|
ignoreOutDistances);
|
|
}
|
|
#endif
|
|
|
|
} } // namespace
|