faiss/perf_tests/bench_hnsw.py

200 lines
6.2 KiB
Python

import argparse
import resource
import time
from contextlib import contextmanager
from dataclasses import dataclass
from typing import Dict, Generator, List, Optional
import faiss # @manual=//faiss/python:pyfaiss
import numpy as np
from faiss.contrib.datasets import ( # @manual=//faiss/contrib:faiss_contrib
Dataset,
SyntheticDataset,
)
US_IN_S = 1_000_000
@dataclass
class PerfCounters:
wall_time_s: float = 0.0
user_time_s: float = 0.0
system_time_s: float = 0.0
@contextmanager
def timed_execution() -> Generator[PerfCounters, None, None]:
pcounters = PerfCounters()
wall_time_start = time.perf_counter()
rusage_start = resource.getrusage(resource.RUSAGE_SELF)
yield pcounters
wall_time_end = time.perf_counter()
rusage_end = resource.getrusage(resource.RUSAGE_SELF)
pcounters.wall_time_s = wall_time_end - wall_time_start
pcounters.user_time_s = rusage_end.ru_utime - rusage_start.ru_utime
pcounters.system_time_s = rusage_end.ru_stime - rusage_start.ru_stime
def is_perf_counter(key: str) -> bool:
return key.endswith("_time_us")
def accumulate_perf_counter(
phase: str,
t: PerfCounters,
counters: Dict[str, int]
):
counters[f"{phase}_wall_time_us"] = int(t.wall_time_s * US_IN_S)
counters[f"{phase}_user_time_us"] = int(t.user_time_s * US_IN_S)
def run_on_dataset(
ds: Dataset,
M: int,
num_threads: int,
num_add_iterations: int,
num_search_iterations: int,
efSearch: int = 16,
efConstruction: int = 40,
search_bounded_queue: bool = True,
) -> Dict[str, int]:
xq = ds.get_queries()
xb = ds.get_database()
nb, d = xb.shape
nq, d = xq.shape
k = 10
# pyre-ignore[16]: Module `faiss` has no attribute `omp_set_num_threads`.
faiss.omp_set_num_threads(num_threads)
index = faiss.IndexHNSWFlat(d, M)
index.hnsw.efConstruction = efConstruction # default
with timed_execution() as t:
for _ in range(num_add_iterations):
index.add(xb)
counters = {}
accumulate_perf_counter("add", t, counters)
counters["nb"] = nb
counters["num_add_iterations"] = num_add_iterations
index.hnsw.efSearch = efSearch
index.hnsw.search_bounded_queue = search_bounded_queue
with timed_execution() as t:
for _ in range(num_search_iterations):
D, I = index.search(xq, k)
accumulate_perf_counter("search", t, counters)
counters["nq"] = nq
counters["efSearch"] = efSearch
counters["efConstruction"] = efConstruction
counters["M"] = M
counters["d"] = d
counters["num_search_iterations"] = num_search_iterations
return counters
def run(
d: int,
nb: int,
nq: int,
M: int,
num_threads: int,
num_add_iterations: int = 1,
num_search_iterations: int = 1,
efSearch: int = 16,
efConstruction: int = 40,
search_bounded_queue: bool = True,
) -> Dict[str, int]:
ds = SyntheticDataset(d=d, nb=nb, nt=0, nq=nq, metric="L2", seed=1338)
return run_on_dataset(
ds,
M=M,
num_add_iterations=num_add_iterations,
num_search_iterations=num_search_iterations,
num_threads=num_threads,
efSearch=efSearch,
efConstruction=efConstruction,
search_bounded_queue=search_bounded_queue,
)
def _accumulate_counters(
element: Dict[str, int], accu: Optional[Dict[str, List[int]]] = None
) -> Dict[str, List[int]]:
if accu is None:
accu = {key: [value] for key, value in element.items()}
return accu
else:
assert accu.keys() <= element.keys(), (
"Accu keys must be a subset of element keys: "
f"{accu.keys()} not a subset of {element.keys()}"
)
for key in accu.keys():
accu[key].append(element[key])
return accu
def main():
parser = argparse.ArgumentParser(description="Benchmark HNSW")
parser.add_argument("--M", type=int, default=32)
parser.add_argument("--num-threads", type=int, default=5)
parser.add_argument("--warm-up-iterations", type=int, default=0)
parser.add_argument("--num-search-iterations", type=int, default=1)
parser.add_argument("--num-add-iterations", type=int, default=1)
parser.add_argument("--num-repetitions", type=int, default=1)
parser.add_argument("--ef-search", type=int, default=16)
parser.add_argument("--ef-construction", type=int, default=40)
parser.add_argument("--search-bounded-queue", action="store_true")
parser.add_argument("--nb", type=int, default=5000)
parser.add_argument("--nq", type=int, default=500)
parser.add_argument("--d", type=int, default=128)
args = parser.parse_args()
if args.warm_up_iterations > 0:
print(f"Warming up for {args.warm_up_iterations} iterations...")
# warm-up
run(
num_search_iterations=args.warm_up_iterations,
num_add_iterations=args.warm_up_iterations,
d=args.d,
nb=args.nb,
nq=args.nq,
M=args.M,
num_threads=args.num_threads,
efSearch=args.ef_search,
efConstruction=args.ef_construction,
search_bounded_queue=args.search_bounded_queue,
)
print(
f"Running benchmark with dataset(nb={args.nb}, nq={args.nq}, "
f"d={args.d}), M={args.M}, num_threads={args.num_threads}, "
f"efSearch={args.ef_search}, efConstruction={args.ef_construction}"
)
result = None
for _ in range(args.num_repetitions):
counters = run(
num_search_iterations=args.num_search_iterations,
num_add_iterations=args.num_add_iterations,
d=args.d,
nb=args.nb,
nq=args.nq,
M=args.M,
num_threads=args.num_threads,
efSearch=args.ef_search,
efConstruction=args.ef_construction,
search_bounded_queue=args.search_bounded_queue,
)
result = _accumulate_counters(counters, result)
assert result is not None
for counter, values in result.items():
if is_perf_counter(counter):
print(
"%s t=%.3f us (± %.4f)" %
(counter, np.mean(values), np.std(values))
)
if __name__ == "__main__":
main()