129 lines
3.8 KiB
Python
129 lines
3.8 KiB
Python
# Copyright (c) Facebook, Inc. and its affiliates.
|
|
#
|
|
# This source code is licensed under the MIT license found in the
|
|
# LICENSE file in the root directory of this source tree.
|
|
|
|
# a few common functions for the tests
|
|
|
|
from __future__ import absolute_import, division, print_function, unicode_literals
|
|
|
|
import numpy as np
|
|
import faiss
|
|
|
|
# reduce number of threads to avoid excessive nb of threads in opt
|
|
# mode (recuces runtime from 100s to 4s!)
|
|
faiss.omp_set_num_threads(4)
|
|
|
|
|
|
def random_unitary(n, d, seed):
|
|
x = faiss.randn(n * d, seed).reshape(n, d)
|
|
faiss.normalize_L2(x)
|
|
return x
|
|
|
|
|
|
class Randu10k:
|
|
|
|
def __init__(self):
|
|
self.nb = 10000
|
|
self.nq = 1000
|
|
self.nt = 10000
|
|
self.d = 128
|
|
|
|
self.xb = random_unitary(self.nb, self.d, 1)
|
|
self.xt = random_unitary(self.nt, self.d, 2)
|
|
self.xq = random_unitary(self.nq, self.d, 3)
|
|
|
|
dotprods = np.dot(self.xq, self.xb.T)
|
|
self.gt = dotprods.argmax(1)
|
|
self.k = 100
|
|
|
|
def launch(self, name, index):
|
|
if not index.is_trained:
|
|
index.train(self.xt)
|
|
index.add(self.xb)
|
|
return index.search(self.xq, self.k)
|
|
|
|
def evalres(self, DI):
|
|
D, I = DI
|
|
e = {}
|
|
for rank in 1, 10, 100:
|
|
e[rank] = ((I[:, :rank] == self.gt.reshape(-1, 1)).sum() /
|
|
float(self.nq))
|
|
print("1-recalls: %s" % e)
|
|
return e
|
|
|
|
|
|
class Randu10kUnbalanced(Randu10k):
|
|
|
|
def __init__(self):
|
|
Randu10k.__init__(self)
|
|
|
|
weights = 0.95 ** np.arange(self.d)
|
|
rs = np.random.RandomState(123)
|
|
weights = weights[rs.permutation(self.d)]
|
|
self.xb *= weights
|
|
self.xb /= np.linalg.norm(self.xb, axis=1)[:, np.newaxis]
|
|
self.xq *= weights
|
|
self.xq /= np.linalg.norm(self.xq, axis=1)[:, np.newaxis]
|
|
self.xt *= weights
|
|
self.xt /= np.linalg.norm(self.xt, axis=1)[:, np.newaxis]
|
|
|
|
dotprods = np.dot(self.xq, self.xb.T)
|
|
self.gt = dotprods.argmax(1)
|
|
self.k = 100
|
|
|
|
|
|
def get_dataset(d, nb, nt, nq):
|
|
rs = np.random.RandomState(123)
|
|
xb = rs.rand(nb, d).astype('float32')
|
|
xt = rs.rand(nt, d).astype('float32')
|
|
xq = rs.rand(nq, d).astype('float32')
|
|
|
|
return (xt, xb, xq)
|
|
|
|
|
|
def get_dataset_2(d, nt, nb, nq):
|
|
"""A dataset that is not completely random but still challenging to
|
|
index
|
|
"""
|
|
d1 = 10 # intrinsic dimension (more or less)
|
|
n = nb + nt + nq
|
|
rs = np.random.RandomState(1338)
|
|
x = rs.normal(size=(n, d1))
|
|
x = np.dot(x, rs.rand(d1, d))
|
|
# now we have a d1-dim ellipsoid in d-dimensional space
|
|
# higher factor (>4) -> higher frequency -> less linear
|
|
x = x * (rs.rand(d) * 4 + 0.1)
|
|
x = np.sin(x)
|
|
x = x.astype('float32')
|
|
return x[:nt], x[nt:nt + nb], x[nt + nb:]
|
|
|
|
|
|
def make_binary_dataset(d, nt, nb, nq):
|
|
assert d % 8 == 0
|
|
rs = np.random.RandomState(123)
|
|
x = rs.randint(256, size=(nb + nq + nt, int(d / 8))).astype('uint8')
|
|
return x[:nt], x[nt:-nq], x[-nq:]
|
|
|
|
|
|
def compare_binary_result_lists(D1, I1, D2, I2):
|
|
"""comparing result lists is difficult because there are many
|
|
ties. Here we sort by (distance, index) pairs and ignore the largest
|
|
distance of each result. Compatible result lists should pass this."""
|
|
assert D1.shape == I1.shape == D2.shape == I2.shape
|
|
n, k = D1.shape
|
|
ndiff = (D1 != D2).sum()
|
|
assert ndiff == 0, '%d differences in distance matrix %s' % (
|
|
ndiff, D1.shape)
|
|
|
|
def normalize_DI(D, I):
|
|
norm = I.max() + 1.0
|
|
Dr = D.astype('float64') + I / norm
|
|
# ignore -1s and elements on last column
|
|
Dr[I1 == -1] = 1e20
|
|
Dr[D == D[:, -1:]] = 1e20
|
|
Dr.sort(axis=1)
|
|
return Dr
|
|
ndiff = (normalize_DI(D1, I1) != normalize_DI(D2, I2)).sum()
|
|
assert ndiff == 0, '%d differences in normalized D matrix' % ndiff
|