faiss/gpu/GpuIndexIVFFlat.cu
Lucas Hosseini a8118acbc5
Facebook sync (May 2019) + relicense (#838)
Changelog:

- changed license: BSD+Patents -> MIT
- propagates exceptions raised in sub-indexes of IndexShards and IndexReplicas
- support for searching several inverted lists in parallel (parallel_mode != 0)
- better support for PQ codes where nbit != 8 or 16
- IVFSpectralHash implementation: spectral hash codes inside an IVF
- 6-bit per component scalar quantizer (4 and 8 bit were already supported)
- combinations of inverted lists: HStackInvertedLists and VStackInvertedLists
- configurable number of threads for OnDiskInvertedLists prefetching (including 0=no prefetch)
- more test and demo code compatible with Python 3 (print with parentheses)
- refactored benchmark code: data loading is now in a single file
2019-05-28 16:17:22 +02:00

245 lines
6.5 KiB
Plaintext

/**
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
#include "GpuIndexIVFFlat.h"
#include "../IndexFlat.h"
#include "../IndexIVFFlat.h"
#include "GpuIndexFlat.h"
#include "GpuResources.h"
#include "impl/IVFFlat.cuh"
#include "utils/CopyUtils.cuh"
#include "utils/DeviceUtils.h"
#include "utils/Float16.cuh"
#include <limits>
namespace faiss { namespace gpu {
GpuIndexIVFFlat::GpuIndexIVFFlat(GpuResources* resources,
const faiss::IndexIVFFlat* index,
GpuIndexIVFFlatConfig config) :
GpuIndexIVF(resources,
index->d,
index->metric_type,
index->nlist,
config),
ivfFlatConfig_(config),
reserveMemoryVecs_(0),
index_(nullptr) {
#ifndef FAISS_USE_FLOAT16
FAISS_THROW_IF_NOT_MSG(!ivfFlatConfig_.useFloat16IVFStorage,
"float16 unsupported; need CUDA SDK >= 7.5");
#endif
copyFrom(index);
}
GpuIndexIVFFlat::GpuIndexIVFFlat(GpuResources* resources,
int dims,
int nlist,
faiss::MetricType metric,
GpuIndexIVFFlatConfig config) :
GpuIndexIVF(resources, dims, metric, nlist, config),
ivfFlatConfig_(config),
reserveMemoryVecs_(0),
index_(nullptr) {
// faiss::Index params
this->is_trained = false;
#ifndef FAISS_USE_FLOAT16
FAISS_THROW_IF_NOT_MSG(!ivfFlatConfig_.useFloat16IVFStorage,
"float16 unsupported; need CUDA SDK >= 7.5");
#endif
// We haven't trained ourselves, so don't construct the IVFFlat
// index yet
}
GpuIndexIVFFlat::~GpuIndexIVFFlat() {
delete index_;
}
void
GpuIndexIVFFlat::reserveMemory(size_t numVecs) {
reserveMemoryVecs_ = numVecs;
if (index_) {
index_->reserveMemory(numVecs);
}
}
void
GpuIndexIVFFlat::copyFrom(const faiss::IndexIVFFlat* index) {
DeviceScope scope(device_);
GpuIndexIVF::copyFrom(index);
// Clear out our old data
delete index_;
index_ = nullptr;
// The other index might not be trained
if (!index->is_trained) {
return;
}
// Otherwise, we can populate ourselves from the other index
this->is_trained = true;
// Copy our lists as well
index_ = new IVFFlat(resources_,
quantizer_->getGpuData(),
index->metric_type == faiss::METRIC_L2,
ivfFlatConfig_.useFloat16IVFStorage,
ivfFlatConfig_.indicesOptions,
memorySpace_);
InvertedLists *ivf = index->invlists;
for (size_t i = 0; i < ivf->nlist; ++i) {
auto numVecs = ivf->list_size(i);
// GPU index can only support max int entries per list
FAISS_THROW_IF_NOT_FMT(numVecs <=
(size_t) std::numeric_limits<int>::max(),
"GPU inverted list can only support "
"%zu entries; %zu found",
(size_t) std::numeric_limits<int>::max(),
numVecs);
index_->addCodeVectorsFromCpu(
i, (const float*)(ivf->get_codes(i)),
ivf->get_ids(i), numVecs);
}
}
void
GpuIndexIVFFlat::copyTo(faiss::IndexIVFFlat* index) const {
DeviceScope scope(device_);
// We must have the indices in order to copy to ourselves
FAISS_THROW_IF_NOT_MSG(ivfFlatConfig_.indicesOptions != INDICES_IVF,
"Cannot copy to CPU as GPU index doesn't retain "
"indices (INDICES_IVF)");
GpuIndexIVF::copyTo(index);
index->code_size = this->d * sizeof(float);
InvertedLists *ivf = new ArrayInvertedLists(
nlist_, index->code_size);
index->replace_invlists(ivf, true);
// Copy the inverted lists
if (index_) {
for (int i = 0; i < nlist_; ++i) {
ivf->add_entries (
i, index_->getListIndices(i).size(),
index_->getListIndices(i).data(),
(const uint8_t*)index_->getListVectors(i).data());
}
}
}
size_t
GpuIndexIVFFlat::reclaimMemory() {
if (index_) {
DeviceScope scope(device_);
return index_->reclaimMemory();
}
return 0;
}
void
GpuIndexIVFFlat::reset() {
if (index_) {
DeviceScope scope(device_);
index_->reset();
this->ntotal = 0;
} else {
FAISS_ASSERT(this->ntotal == 0);
}
}
void
GpuIndexIVFFlat::train(Index::idx_t n, const float* x) {
DeviceScope scope(device_);
if (this->is_trained) {
FAISS_ASSERT(quantizer_->is_trained);
FAISS_ASSERT(quantizer_->ntotal == nlist_);
FAISS_ASSERT(index_);
return;
}
FAISS_ASSERT(!index_);
trainQuantizer_(n, x);
// The quantizer is now trained; construct the IVF index
index_ = new IVFFlat(resources_,
quantizer_->getGpuData(),
this->metric_type == faiss::METRIC_L2,
ivfFlatConfig_.useFloat16IVFStorage,
ivfFlatConfig_.indicesOptions,
memorySpace_);
if (reserveMemoryVecs_) {
index_->reserveMemory(reserveMemoryVecs_);
}
this->is_trained = true;
}
void
GpuIndexIVFFlat::addImpl_(int n,
const float* x,
const Index::idx_t* xids) {
// Device is already set in GpuIndex::add
FAISS_ASSERT(index_);
FAISS_ASSERT(n > 0);
// Data is already resident on the GPU
Tensor<float, 2, true> data(const_cast<float*>(x), {n, (int) this->d});
static_assert(sizeof(long) == sizeof(Index::idx_t), "size mismatch");
Tensor<long, 1, true> labels(const_cast<long*>(xids), {n});
// Not all vectors may be able to be added (some may contain NaNs etc)
index_->classifyAndAddVectors(data, labels);
// but keep the ntotal based on the total number of vectors that we attempted
// to add
ntotal += n;
}
void
GpuIndexIVFFlat::searchImpl_(int n,
const float* x,
int k,
float* distances,
Index::idx_t* labels) const {
// Device is already set in GpuIndex::search
FAISS_ASSERT(index_);
FAISS_ASSERT(n > 0);
// Data is already resident on the GPU
Tensor<float, 2, true> queries(const_cast<float*>(x), {n, (int) this->d});
Tensor<float, 2, true> outDistances(distances, {n, k});
static_assert(sizeof(long) == sizeof(Index::idx_t), "size mismatch");
Tensor<long, 2, true> outLabels(const_cast<long*>(labels), {n, k});
index_->query(queries, nprobe_, k, outDistances, outLabels);
}
} } // namespace