126 lines
3.6 KiB
Plaintext
126 lines
3.6 KiB
Plaintext
/**
|
|
* Copyright (c) Facebook, Inc. and its affiliates.
|
|
*
|
|
* This source code is licensed under the MIT license found in the
|
|
* LICENSE file in the root directory of this source tree.
|
|
*/
|
|
|
|
|
|
#include <faiss/IndexBinaryFlat.h>
|
|
#include <faiss/utils/random.h>
|
|
#include <faiss/gpu/GpuIndexBinaryFlat.h>
|
|
#include <faiss/gpu/StandardGpuResources.h>
|
|
#include <faiss/gpu/test/TestUtils.h>
|
|
#include <faiss/gpu/utils/DeviceTensor.cuh>
|
|
#include <faiss/gpu/utils/DeviceUtils.h>
|
|
#include <faiss/gpu/utils/HostTensor.cuh>
|
|
#include <faiss/gpu/utils/Timer.h>
|
|
#include <gflags/gflags.h>
|
|
#include <map>
|
|
#include <memory>
|
|
#include <vector>
|
|
|
|
#include <cuda_profiler_api.h>
|
|
|
|
DEFINE_int32(k, 3, "final number of closest results returned");
|
|
DEFINE_int32(num, 128, "# of vecs");
|
|
DEFINE_int32(dim, 128, "# of dimensions");
|
|
DEFINE_int32(num_queries, 3, "number of query vectors");
|
|
DEFINE_int64(seed, -1, "specify random seed");
|
|
DEFINE_int64(pinned_mem, 0, "pinned memory allocation to use");
|
|
DEFINE_bool(cpu, true, "run the CPU code for timing and comparison");
|
|
DEFINE_bool(use_unified_mem, false, "use Pascal unified memory for the index");
|
|
|
|
using namespace faiss::gpu;
|
|
|
|
int main(int argc, char** argv) {
|
|
gflags::ParseCommandLineFlags(&argc, &argv, true);
|
|
|
|
cudaProfilerStop();
|
|
|
|
auto seed = FLAGS_seed != -1L ? FLAGS_seed : time(nullptr);
|
|
printf("using seed %ld\n", seed);
|
|
|
|
auto numQueries = FLAGS_num_queries;
|
|
|
|
auto index = std::unique_ptr<faiss::IndexBinaryFlat>(
|
|
new faiss::IndexBinaryFlat(FLAGS_dim));
|
|
|
|
HostTensor<unsigned char, 2, true> vecs({FLAGS_num, FLAGS_dim / 8});
|
|
faiss::byte_rand(vecs.data(), vecs.numElements(), seed);
|
|
|
|
index->add(FLAGS_num, vecs.data());
|
|
|
|
printf("Database: dim %d num vecs %d\n", FLAGS_dim, FLAGS_num);
|
|
printf("Hamming lookup: %d queries, total k %d\n",
|
|
numQueries, FLAGS_k);
|
|
|
|
// Convert to GPU index
|
|
printf("Copying index to GPU...\n");
|
|
|
|
GpuIndexBinaryFlatConfig config;
|
|
config.memorySpace = FLAGS_use_unified_mem ?
|
|
MemorySpace::Unified : MemorySpace::Device;
|
|
|
|
faiss::gpu::StandardGpuResources res;
|
|
|
|
faiss::gpu::GpuIndexBinaryFlat gpuIndex(&res,
|
|
index.get(),
|
|
config);
|
|
printf("copy done\n");
|
|
|
|
// Build query vectors
|
|
HostTensor<unsigned char, 2, true> cpuQuery({numQueries, FLAGS_dim / 8});
|
|
faiss::byte_rand(cpuQuery.data(), cpuQuery.numElements(), seed);
|
|
|
|
// Time faiss CPU
|
|
HostTensor<int, 2, true>
|
|
cpuDistances({numQueries, FLAGS_k});
|
|
HostTensor<faiss::IndexBinary::idx_t, 2, true>
|
|
cpuIndices({numQueries, FLAGS_k});
|
|
|
|
if (FLAGS_cpu) {
|
|
float cpuTime = 0.0f;
|
|
|
|
CpuTimer timer;
|
|
index->search(numQueries,
|
|
cpuQuery.data(),
|
|
FLAGS_k,
|
|
cpuDistances.data(),
|
|
cpuIndices.data());
|
|
|
|
cpuTime = timer.elapsedMilliseconds();
|
|
printf("CPU time %.3f ms\n", cpuTime);
|
|
}
|
|
|
|
HostTensor<int, 2, true> gpuDistances({numQueries, FLAGS_k});
|
|
HostTensor<faiss::Index::idx_t, 2, true> gpuIndices({numQueries, FLAGS_k});
|
|
|
|
CUDA_VERIFY(cudaProfilerStart());
|
|
faiss::gpu::synchronizeAllDevices();
|
|
|
|
float gpuTime = 0.0f;
|
|
|
|
// Time GPU
|
|
{
|
|
CpuTimer timer;
|
|
|
|
gpuIndex.search(cpuQuery.getSize(0),
|
|
cpuQuery.data(),
|
|
FLAGS_k,
|
|
gpuDistances.data(),
|
|
gpuIndices.data());
|
|
|
|
// There is a device -> host copy above, so no need to time
|
|
// additional synchronization with the GPU
|
|
gpuTime = timer.elapsedMilliseconds();
|
|
}
|
|
|
|
CUDA_VERIFY(cudaProfilerStop());
|
|
printf("GPU time %.3f ms\n", gpuTime);
|
|
|
|
CUDA_VERIFY(cudaDeviceSynchronize());
|
|
|
|
return 0;
|
|
}
|