86 lines
2.1 KiB
Python
86 lines
2.1 KiB
Python
#! /usr/bin/env python2
|
|
|
|
# Copyright (c) Facebook, Inc. and its affiliates.
|
|
#
|
|
# This source code is licensed under the MIT license found in the
|
|
# LICENSE file in the root directory of this source tree.
|
|
|
|
from __future__ import print_function
|
|
import numpy as np
|
|
import faiss
|
|
import time
|
|
|
|
swig_ptr = faiss.swig_ptr
|
|
|
|
if False:
|
|
a = np.arange(10, 14).astype('float32')
|
|
b = np.arange(20, 24).astype('float32')
|
|
|
|
faiss.fvec_inner_product (swig_ptr(a), swig_ptr(b), 4)
|
|
|
|
1/0
|
|
|
|
xd = 100
|
|
yd = 1000000
|
|
|
|
np.random.seed(1234)
|
|
|
|
faiss.omp_set_num_threads(1)
|
|
|
|
print('xd=%d yd=%d' % (xd, yd))
|
|
|
|
print('Running inner products test..')
|
|
for d in 3, 4, 12, 36, 64:
|
|
|
|
x = faiss.rand(xd * d).reshape(xd, d)
|
|
y = faiss.rand(yd * d).reshape(yd, d)
|
|
|
|
distances = np.empty((xd, yd), dtype='float32')
|
|
|
|
t0 = time.time()
|
|
for i in range(xd):
|
|
faiss.fvec_inner_products_ny(swig_ptr(distances[i]),
|
|
swig_ptr(x[i]),
|
|
swig_ptr(y),
|
|
d, yd)
|
|
t1 = time.time()
|
|
|
|
# sparse verification
|
|
ntry = 100
|
|
num, denom = 0, 0
|
|
for t in range(ntry):
|
|
xi = np.random.randint(xd)
|
|
yi = np.random.randint(yd)
|
|
num += abs(distances[xi, yi] - np.dot(x[xi], y[yi]))
|
|
denom += abs(distances[xi, yi])
|
|
|
|
print('d=%d t=%.3f s diff=%g' % (d, t1 - t0, num / denom))
|
|
|
|
|
|
print('Running L2sqr test..')
|
|
for d in 3, 4, 12, 36, 64:
|
|
|
|
x = faiss.rand(xd * d).reshape(xd, d)
|
|
y = faiss.rand(yd * d).reshape(yd, d)
|
|
|
|
distances = np.empty((xd, yd), dtype='float32')
|
|
|
|
t0 = time.time()
|
|
for i in range(xd):
|
|
faiss.fvec_L2sqr_ny(swig_ptr(distances[i]),
|
|
swig_ptr(x[i]),
|
|
swig_ptr(y),
|
|
d, yd)
|
|
t1 = time.time()
|
|
|
|
# sparse verification
|
|
ntry = 100
|
|
num, denom = 0, 0
|
|
for t in range(ntry):
|
|
xi = np.random.randint(xd)
|
|
yi = np.random.randint(yd)
|
|
num += abs(distances[xi, yi] - np.sum((x[xi] - y[yi]) ** 2))
|
|
denom += abs(distances[xi, yi])
|
|
|
|
print('d=%d t=%.3f s diff=%g' % (d, t1 - t0, num / denom))
|