2020-05-27 22:39:21 +08:00
# DSR in FastReID
**Deep Spatial Feature Reconstruction for Partial Person Re-identification**
Lingxiao He, Xingyu Liao
[[`CVPR2018` ](http://openaccess.thecvf.com/content_cvpr_2018/papers/He_Deep_Spatial_Feature_CVPR_2018_paper.pdf )] [[`BibTeX` ](#CitingDSR )]
**Foreground-aware Pyramid Reconstruction for Alignment-free Occluded Person Re-identification**
Lingxiao He, Xingyu Liao
2020-05-27 22:43:20 +08:00
2020-05-27 22:39:21 +08:00
[[`ICCV2019` ](http://openaccess.thecvf.com/content_ICCV_2019/papers/He_Foreground-Aware_Pyramid_Reconstruction_for_Alignment-Free_Occluded_Person_Re-Identification_ICCV_2019_paper.pdf )] [[`BibTeX` ](#CitingFPR )]
2020-07-14 11:33:27 +08:00
## News!
[1] The old_version code can be check in [old_version ](https://github.com/JDAI-CV/Partial-Person-ReID ), you can obtain the same result published in paper, and the new version code is updating, please waiting!
2020-05-27 22:39:21 +08:00
## Installation
2020-05-27 22:43:20 +08:00
2020-06-16 11:46:22 +08:00
First install FastReID, and then put Partial Datasets in directory datasets. The whole framework of FastReID-DSR is
2020-05-27 22:39:21 +08:00
< div align = "center" >
2020-05-27 22:43:20 +08:00
< img src = "https://firebasestorage.googleapis.com/v0/b/firescript-577a2.appspot.com/o/imgs%2Fapp%2FSherlockWorkspace%2F1nVTE3Sn5c.jpg?alt=media&token=e7e9fcfc-4fc1-49c8-bcf4-c007028fdd25" width = "700px" / >
2020-05-27 22:39:21 +08:00
< / div >
and the detail you can refer to
2020-06-01 10:42:33 +08:00
## Datasets
2020-06-29 14:50:48 +08:00
The datasets can find in [Google Drive ](https://drive.google.com/file/d/1p7Jvo-RJhU_B6hf9eAhIEFNhvrzM5cdh/view?usp=sharing )
2020-06-29 13:47:42 +08:00
2020-06-01 10:42:33 +08:00
PartialREID---gallery: 300 images of 60 ids, query: 300 images of 60 ids
2020-06-29 13:47:42 +08:00
PartialiLIDS---gallery: 119 images of 119 ids, query: 119 images of 119 ids
2020-06-01 10:42:33 +08:00
OccludedREID---gallery: 1,000 images of 200 ids, query: 1,000 images of 200 ids
2020-05-27 22:39:21 +08:00
## Training and Evaluation
To train a model, run:
```bash
python3 projects/PartialReID/train_net.py --config-file < config.yaml >
```
For example, to train the re-id network with IBN-ResNet-50 Backbone
one should execute:
```bash
CUDA_VISIBLE_DEVICES='0,1,2,3' python3 projects/PartialReID/train_net.py --config-file 'projects/PartialReID/configs/partial_market.yml'
```
## Results
| Method | PartialREID | OccludedREID | PartialiLIDS |
|:--:|:--:|:--:|:--:|
| | Rank@1 (mAP)| Rank@1 (mAP)| Rank@1 (mAP)|
| DSR (CVPR’ 18) |73.7(68.1) |72.8(62.8)|64.3(58.1)|
| FPR (ICCV'19) | 81.0(76.6)|78.3(68.0)|68.1(61.8)|
| FastReID-DSR | 82.7(76.8)|81.6(70.9)|73.1(79.8) |
## <a name="CitingDSR"></a >Citing DSR and Citing FPR
If you use DSR or FPR, please use the following BibTeX entry.
```
@inproceedings {he2018deep,
title={Deep spatial feature reconstruction for partial person re-identification: Alignment-free approach},
author={He, Lingxiao and Liang, Jian and Li, Haiqing and Sun, Zhenan},
booktitle={IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
year={2018}
}
@inproceedings {he2019foreground,
title={Foreground-aware Pyramid Reconstruction for Alignment-free Occluded Person Re-identification},
author={He, Lingxiao and Wang, Yinggang and Liu, Wu and Zhao, He and Sun, Zhenan and Feng, Jiashi},
booktitle={IEEE International Conference on Computer Vision (ICCV)},
year={2019}
}
2020-06-01 10:42:33 +08:00
```