180 lines
6.2 KiB
Python
Raw Normal View History

# encoding: utf-8
"""
@author: xingyu liao
@contact: sherlockliao01@gmail.com
"""
import torch
from torch import nn
from fastreid.layers import get_norm
from fastreid.modeling.backbones import BACKBONE_REGISTRY
def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1):
"""3x3 convolution with padding"""
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=dilation, groups=groups, bias=False, dilation=dilation)
def conv1x1(in_planes, out_planes, stride=1):
"""1x1 convolution"""
return nn.Conv2d(in_planes,
out_planes,
kernel_size=1,
stride=stride,
bias=False)
class IBasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, bn_norm, stride=1, downsample=None,
groups=1, base_width=64, dilation=1):
super().__init__()
if groups != 1 or base_width != 64:
raise ValueError('BasicBlock only supports groups=1 and base_width=64')
if dilation > 1:
raise NotImplementedError("Dilation > 1 not supported in BasicBlock")
self.bn1 = get_norm(bn_norm, inplanes)
self.conv1 = conv3x3(inplanes, planes)
self.bn2 = get_norm(bn_norm, planes)
self.prelu = nn.PReLU(planes)
self.conv2 = conv3x3(planes, planes, stride)
self.bn3 = get_norm(bn_norm, planes)
self.downsample = downsample
self.stride = stride
def forward(self, x):
identity = x
out = self.bn1(x)
out = self.conv1(out)
out = self.bn2(out)
out = self.prelu(out)
out = self.conv2(out)
out = self.bn3(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
return out
class IResNet(nn.Module):
fc_scale = 7 * 7
def __init__(self, block, layers, bn_norm, dropout=0, zero_init_residual=False,
groups=1, width_per_group=64, replace_stride_with_dilation=None, fp16=False):
super().__init__()
self.inplanes = 64
self.dilation = 1
self.fp16 = fp16
if replace_stride_with_dilation is None:
replace_stride_with_dilation = [False, False, False]
if len(replace_stride_with_dilation) != 3:
raise ValueError("replace_stride_with_dilation should be None "
"or a 3-element tuple, got {}".format(replace_stride_with_dilation))
self.groups = groups
self.base_width = width_per_group
self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=3, stride=1, padding=1, bias=False)
self.bn1 = get_norm(bn_norm, self.inplanes)
self.prelu = nn.PReLU(self.inplanes)
self.layer1 = self._make_layer(block, 64, layers[0], bn_norm, stride=2)
self.layer2 = self._make_layer(block,
128,
layers[1],
bn_norm,
stride=2,
dilate=replace_stride_with_dilation[0])
self.layer3 = self._make_layer(block,
256,
layers[2],
bn_norm,
stride=2,
dilate=replace_stride_with_dilation[1])
self.layer4 = self._make_layer(block,
512,
layers[3],
bn_norm,
stride=2,
dilate=replace_stride_with_dilation[2])
self.bn2 = get_norm(bn_norm, 512 * block.expansion)
self.dropout = nn.Dropout(p=dropout, inplace=True)
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.normal_(m.weight, 0, 0.1)
elif m.__class__.__name__.find('Norm') != -1:
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
if zero_init_residual:
for m in self.modules():
if isinstance(m, IBasicBlock):
nn.init.constant_(m.bn2.weight, 0)
def _make_layer(self, block, planes, blocks, bn_norm, stride=1, dilate=False):
downsample = None
previous_dilation = self.dilation
if dilate:
self.dilation *= stride
stride = 1
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
conv1x1(self.inplanes, planes * block.expansion, stride),
get_norm(bn_norm, planes * block.expansion),
)
layers = []
layers.append(
block(self.inplanes, planes, bn_norm, stride, downsample, self.groups,
self.base_width, previous_dilation))
self.inplanes = planes * block.expansion
for _ in range(1, blocks):
layers.append(
block(self.inplanes,
planes,
bn_norm,
groups=self.groups,
base_width=self.base_width,
dilation=self.dilation))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.prelu(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.bn2(x)
x = self.dropout(x)
return x
@BACKBONE_REGISTRY.register()
def build_iresnet_backbone(cfg):
"""
Create a IResNet instance from config.
Returns:
ResNet: a :class:`ResNet` instance.
"""
# fmt: off
bn_norm = cfg.MODEL.BACKBONE.NORM
depth = cfg.MODEL.BACKBONE.DEPTH
dropout = cfg.MODEL.BACKBONE.DROPOUT
fp16 = cfg.SOLVER.AMP.ENABLED
# fmt: on
num_blocks_per_stage = {
'18x': [2, 2, 2, 2],
'34x': [3, 4, 6, 3],
'50x': [3, 4, 14, 3],
'100x': [3, 13, 30, 3],
'200x': [6, 26, 60, 6],
}[depth]
model = IResNet(IBasicBlock, num_blocks_per_stage, bn_norm, dropout, fp16=fp16)
return model