mirror of https://github.com/JDAI-CV/fast-reid.git
73 lines
2.2 KiB
Python
73 lines
2.2 KiB
Python
|
# encoding: utf-8
|
||
|
"""
|
||
|
@author: Jinkai Zheng
|
||
|
@contact: 1315673509@qq.com
|
||
|
"""
|
||
|
|
||
|
import os.path as osp
|
||
|
import random
|
||
|
|
||
|
from .bases import ImageDataset
|
||
|
from ..datasets import DATASET_REGISTRY
|
||
|
|
||
|
|
||
|
@DATASET_REGISTRY.register()
|
||
|
class VehicleID(ImageDataset):
|
||
|
"""VehicleID.
|
||
|
|
||
|
Reference:
|
||
|
Liu et al. Deep relative distance learning: Tell the difference between similar vehicles. CVPR 2016.
|
||
|
|
||
|
URL: `<https://pkuml.org/resources/pku-vehicleid.html>`_
|
||
|
|
||
|
Dataset statistics:
|
||
|
- identities: 26267.
|
||
|
- images: 221763.
|
||
|
"""
|
||
|
dataset_dir = 'vehicleid'
|
||
|
dataset_url = None
|
||
|
|
||
|
def __init__(self, root='/home/liuxinchen3/notespace/data', **kwargs):
|
||
|
self.dataset_dir = osp.join(root, self.dataset_dir)
|
||
|
|
||
|
self.image_dir = osp.join(self.dataset_dir, 'image')
|
||
|
self.train_list = osp.join(self.dataset_dir, 'train_test_split/train_list.txt')
|
||
|
self.test_list = osp.join(self.dataset_dir, 'train_test_split/test_list_2400.txt')
|
||
|
|
||
|
required_files = [
|
||
|
self.dataset_dir,
|
||
|
self.image_dir,
|
||
|
self.train_list,
|
||
|
self.test_list,
|
||
|
]
|
||
|
self.check_before_run(required_files)
|
||
|
|
||
|
train = self.process_dir(self.train_list, is_train=True)
|
||
|
query, gallery = self.process_dir(self.test_list, is_train=False)
|
||
|
|
||
|
super(VehicleID, self).__init__(train, query, gallery, **kwargs)
|
||
|
|
||
|
def process_dir(self, list_file, is_train=True):
|
||
|
img_list_lines = open(list_file, 'r').readlines()
|
||
|
|
||
|
dataset = []
|
||
|
for idx, line in enumerate(img_list_lines):
|
||
|
line = line.strip()
|
||
|
vid = line.split(' ')[1]
|
||
|
imgid = line.split(' ')[0]
|
||
|
img_path = osp.join(self.image_dir, imgid + '.jpg')
|
||
|
dataset.append((img_path, int(vid), int(imgid)))
|
||
|
|
||
|
random.shuffle(dataset)
|
||
|
vid_container = set()
|
||
|
if is_train:
|
||
|
return dataset
|
||
|
else:
|
||
|
query = []
|
||
|
for sample in dataset:
|
||
|
if sample[1] not in vid_container:
|
||
|
vid_container.add(sample[1])
|
||
|
query.append(sample)
|
||
|
|
||
|
return query, dataset
|