mirror of https://github.com/JDAI-CV/fast-reid.git
110 lines
3.8 KiB
Python
110 lines
3.8 KiB
Python
|
# coding: utf-8
|
|||
|
|
|||
|
import copy
|
|||
|
import itertools
|
|||
|
import logging
|
|||
|
from collections import OrderedDict
|
|||
|
|
|||
|
import numpy as np
|
|||
|
import torch
|
|||
|
from fastreid.utils import comm
|
|||
|
from sklearn import metrics as skmetrics
|
|||
|
|
|||
|
from .clas_evaluator import ClasEvaluator
|
|||
|
|
|||
|
logger = logging.getLogger(__name__)
|
|||
|
|
|||
|
|
|||
|
class PairEvaluator(ClasEvaluator):
|
|||
|
def __init__(self, cfg, output_dir=None):
|
|||
|
super(PairEvaluator, self).__init__(cfg=cfg, output_dir=output_dir)
|
|||
|
self._threshold_list = [0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.91, 0.92, 0.93, 0.94, 0.95, 0.96, 0.97, 0.98]
|
|||
|
|
|||
|
def process(self, inputs, outputs):
|
|||
|
pred_logits = outputs.to(self._cpu_device, torch.float32)
|
|||
|
labels = inputs["targets"].to(self._cpu_device)
|
|||
|
|
|||
|
with torch.no_grad():
|
|||
|
probs = torch.softmax(pred_logits, dim=-1)
|
|||
|
probs, _ = torch.max(probs, dim=-1)
|
|||
|
|
|||
|
labels = labels.numpy()
|
|||
|
probs = probs.numpy()
|
|||
|
batch_size = probs.shape[0]
|
|||
|
|
|||
|
# 计算这3个总体值,还有给定阈值下的precision, recall, f1
|
|||
|
acc = skmetrics.accuracy_score(labels, probs > 0.5) * batch_size
|
|||
|
ap = skmetrics.average_precision_score(labels, probs) * batch_size
|
|||
|
auc = skmetrics.roc_auc_score(labels, probs) * batch_size # auc under roc
|
|||
|
|
|||
|
precisions = []
|
|||
|
recalls = []
|
|||
|
f1s = []
|
|||
|
for thresh in self._threshold_list:
|
|||
|
precision = skmetrics.precision_score(labels, probs >= thresh, zero_division=0) * batch_size
|
|||
|
recall = skmetrics.recall_score(labels, probs >= thresh, zero_division=0) * batch_size
|
|||
|
if precision + recall == 0:
|
|||
|
f1 = 0
|
|||
|
else:
|
|||
|
f1 = 2 * precision * recall / (precision + recall) * batch_size
|
|||
|
|
|||
|
precisions.append(precision)
|
|||
|
recalls.append(recall)
|
|||
|
f1s.append(f1)
|
|||
|
|
|||
|
self._predictions.append({
|
|||
|
'acc': acc,
|
|||
|
'ap': ap,
|
|||
|
'auc': auc,
|
|||
|
'precisions': np.asarray(precisions),
|
|||
|
'recalls': np.asarray(recalls),
|
|||
|
'f1s': np.asarray(recalls),
|
|||
|
'num_samples': batch_size
|
|||
|
})
|
|||
|
|
|||
|
def evaluate(self):
|
|||
|
if comm.get_world_size() > 1:
|
|||
|
comm.synchronize()
|
|||
|
predictions = comm.gather(self._predictions, dst=0)
|
|||
|
predictions = list(itertools.chain(*predictions))
|
|||
|
|
|||
|
if not comm.is_main_process():
|
|||
|
return {}
|
|||
|
else:
|
|||
|
predictions = self._predictions
|
|||
|
|
|||
|
total_acc = 0
|
|||
|
total_ap = 0
|
|||
|
total_auc = 0
|
|||
|
total_precisions = np.zeros((len(self._threshold_list,)))
|
|||
|
total_recalls = np.zeros((len(self._threshold_list,)))
|
|||
|
total_f1s = np.zeros((len(self._threshold_list,)))
|
|||
|
total_samples = 0
|
|||
|
for prediction in predictions:
|
|||
|
total_acc += prediction['acc']
|
|||
|
total_ap += prediction['ap']
|
|||
|
total_auc += prediction['auc']
|
|||
|
total_precisions += prediction['precisions']
|
|||
|
total_recalls += prediction['recalls']
|
|||
|
total_f1s += prediction['f1s']
|
|||
|
total_samples += prediction['num_samples']
|
|||
|
|
|||
|
acc = total_acc / total_samples
|
|||
|
ap = total_ap / total_samples
|
|||
|
auc = total_auc / total_samples
|
|||
|
precisions = total_precisions / total_samples
|
|||
|
recalls = total_recalls / total_samples
|
|||
|
f1s = total_f1s / total_samples
|
|||
|
|
|||
|
self._results = OrderedDict()
|
|||
|
self._results['Acc'] = acc
|
|||
|
self._results['Ap'] = ap
|
|||
|
self._results['Auc'] = auc
|
|||
|
self._results['Thresholds'] = self._threshold_list
|
|||
|
self._results['Precisions'] = precisions
|
|||
|
self._results['Recalls'] = recalls
|
|||
|
self._results['F1_Scores'] = f1s
|
|||
|
|
|||
|
return copy.deepcopy(self._results)
|
|||
|
|