mirror of https://github.com/JDAI-CV/fast-reid.git
48 lines
1.4 KiB
Python
48 lines
1.4 KiB
Python
|
# encoding: utf-8
|
||
|
"""
|
||
|
@author: xingyu liao
|
||
|
@contact: sherlockliao01@gmail.com
|
||
|
"""
|
||
|
|
||
|
import os
|
||
|
from glob import glob
|
||
|
|
||
|
from fastreid.data.datasets import DATASET_REGISTRY
|
||
|
from fastreid.data.datasets.bases import ImageDataset
|
||
|
|
||
|
__all__ = ['LPW', ]
|
||
|
|
||
|
|
||
|
@DATASET_REGISTRY.register()
|
||
|
class LPW(ImageDataset):
|
||
|
dataset_dir = "pep_256x128"
|
||
|
dataset_name = "lpw"
|
||
|
|
||
|
def __init__(self, root='datasets', **kwargs):
|
||
|
self.root = root
|
||
|
self.train_path = os.path.join(self.root, self.dataset_dir)
|
||
|
|
||
|
required_files = [self.train_path]
|
||
|
self.check_before_run(required_files)
|
||
|
|
||
|
train = self.process_train(self.train_path)
|
||
|
|
||
|
super().__init__(train, [], [], **kwargs)
|
||
|
|
||
|
def process_train(self, train_path):
|
||
|
data = []
|
||
|
|
||
|
file_path_list = ['scen1', 'scen2', 'scen3']
|
||
|
|
||
|
for scene in file_path_list:
|
||
|
cam_list = os.listdir(os.path.join(train_path, scene))
|
||
|
for cam in cam_list:
|
||
|
camid = self.dataset_name + "_" + cam
|
||
|
pid_list = os.listdir(os.path.join(train_path, scene, cam))
|
||
|
for pid_dir in pid_list:
|
||
|
img_paths = glob(os.path.join(train_path, scene, cam, pid_dir, "*.jpg"))
|
||
|
for img_path in img_paths:
|
||
|
pid = self.dataset_name + "_" + scene + "-" + pid_dir
|
||
|
data.append([img_path, pid, camid])
|
||
|
return data
|