2020-04-29 16:18:54 +08:00
# FastReID Model Zoo and Baselines
## Introduction
2020-05-29 10:10:43 +08:00
This file documents collection of baselines trained with fastreid. All numbers were obtained with 1 NVIDIA P40 GPU.
The software in use were PyTorch 1.4, CUDA 10.1.
In addition to these official baseline models, you can find more models in [projects/ ](https://github.com/JDAI-CV/fast-reid/tree/master/projects ).
### How to Read the Tables
- The "Name" column contains a link to the config file.
Running `tools/train_net.py` with this config file and 1 GPU will reproduce the model.
- The *model id* column is provided for ease of reference. To check downloaded file integrity, any model on this page contains tis md5 prefix in its file name.
- Training curves and other statistics can be found in `metrics` for each model.
### Common Settings for all Person reid models
2020-05-01 09:56:33 +08:00
**BoT**:
2020-05-29 10:10:43 +08:00
[Bag of Tricks and A Strong Baseline for Deep Person Re-identification ](http://openaccess.thecvf.com/content_CVPRW_2019/papers/TRMTMCT/Luo_Bag_of_Tricks_and_a_Strong_Baseline_for_Deep_Person_CVPRW_2019_paper.pdf ). CVPRW2019, Oral.
2020-05-01 09:56:33 +08:00
**AGW**:
2020-05-29 10:10:43 +08:00
[ReID-Survey with a Powerful AGW Baseline ](https://github.com/mangye16/ReID-Survey ).
2020-05-01 09:56:33 +08:00
2020-05-23 10:42:24 +08:00
**MGN**:
2020-05-29 10:10:43 +08:00
[Learning Discriminative Features with Multiple Granularities for Person Re-Identification ](https://arxiv.org/abs/1804.01438v1 )
2020-05-01 09:56:33 +08:00
**SBS**:
2020-05-23 10:42:24 +08:00
stronger baseline on top of BoT:
Bag of Freebies(BoF):
1. Circle loss
2. Freeze backbone training
3. Cutout data augmentation & Auto Augmentation
4. Cosine annealing learning rate decay
5. Soft margin triplet loss
Bag of Specials(BoS):
2020-05-06 09:58:49 +08:00
2020-05-01 09:56:33 +08:00
1. Non-local block
2. GeM pooling
2020-04-29 16:22:02 +08:00
### Market1501 Baselines
2020-04-29 16:18:54 +08:00
2020-04-29 18:15:27 +08:00
**BoT**:
2020-05-29 10:10:43 +08:00
| Method | Pretrained | Rank@1 | mAP | mINP | download |
| :---: | :---: | :---: |:---: | :---: | :---: |
| [BoT(R50) ](https://github.com/JDAI-CV/fast-reid/blob/master/configs/Market1501/bagtricks_R50.yml ) | ImageNet | 94.4% | 86.1% | 59.4% | - |
| [BoT(R50-ibn) ](https://github.com/JDAI-CV/fast-reid/blob/master/configs/Market1501/bagtricks_R50-ibn.yml ) | ImageNet | 94.9% | 87.6% | 64.1% | - |
| [BoT(S50) ](https://github.com/JDAI-CV/fast-reid/blob/master/configs/Market1501/bagtricks_S50.yml ) | ImageNet | 95.1% | 88.5% | 66.0% | - |
| [BoT(R101-ibn) ](https://github.com/JDAI-CV/fast-reid/blob/master/configs/Market1501/bagtricks_R101-ibn.yml ) | ImageNet| 95.4% | 88.9% | 67.4% | - |
2020-04-29 18:15:27 +08:00
**AGW**:
2020-05-29 10:10:43 +08:00
| Method | Pretrained | Rank@1 | mAP | mINP | download |
| :---: | :---: | :---: |:---: | :---: |:---: |
| [AGW(R50) ](https://github.com/JDAI-CV/fast-reid/blob/master/configs/Market1501/AGW_R50.yml ) | ImageNet | 95.3% | 88.2% | 66.3% | - |
| [AGW(R50-ibn) ](https://github.com/JDAI-CV/fast-reid/blob/master/configs/Market1501/AGW_R50-ibn.yml ) | ImageNet | 95.1% | 88.7% | 67.1% | -|
| [AGW(S50) ](https://github.com/JDAI-CV/fast-reid/blob/master/configs/Market1501/AGW_S50.yml ) | ImageNet | 94.7% | 87.1% | 62.2% | -|
| [AGW(R101-ibn) ](https://github.com/JDAI-CV/fast-reid/blob/master/configs/Market1501/AGW_R101-ibn.yml ) | ImageNet | 95.5% | 89.5% | 69.5% | - |
2020-04-29 18:15:27 +08:00
**SBS**:
2020-05-29 10:10:43 +08:00
| Method | Pretrained | Rank@1 | mAP | mINP | download |
| :---: | :---: | :---: |:---: | :---: |:---:|
| [SBS(R50) ](https://github.com/JDAI-CV/fast-reid/blob/master/configs/Market1501/sbs_R50.yml ) | ImageNet | 95.4% | 88.2% | 64.8% | - |
| [SBS(R50-ibn) ](https://github.com/JDAI-CV/fast-reid/blob/master/configs/Market1501/sbs_R50-ibn.yml ) | ImageNet | 95.7% | 89.3% | 67.5% | -|
| [SBS(S50) ](https://github.com/JDAI-CV/fast-reid/blob/master/configs/Market1501/sbs_S50.yml ) | ImageNet | 95.0% | 87.0% | 60.6% | -|
| [SBS(R101-ibn) ](https://github.com/JDAI-CV/fast-reid/blob/master/configs/Market1501/sbs_R101-ibn.yml ) | ImageNet | 96.3% | 90.3% | 70.0% | -|
2020-04-29 16:18:54 +08:00
2020-05-23 10:42:24 +08:00
**MGN**:
2020-05-29 10:10:43 +08:00
| Method | Pretrained | Rank@1 | mAP | mINP | download |
| :---: | :---: | :---: |:---: | :---: | :---:|
| [SBS(R50-ibn) ](https://github.com/JDAI-CV/fast-reid/blob/master/configs/Market1501/mgn_R50-ibn.yml ) | ImageNet | 95.8% | 89.7% | 67.0% | -|
2020-05-23 10:42:24 +08:00
2020-04-29 16:22:02 +08:00
### DukeMTMC Baseline
2020-04-29 16:18:54 +08:00
2020-04-29 18:15:27 +08:00
**BoT**:
2020-05-29 10:10:43 +08:00
| Method | Pretrained | Rank@1 | mAP | mINP | download |
| :---: | :---: | :---: |:---: | :---: | :---: |
| [BoT(R50) ](https://github.com/JDAI-CV/fast-reid/blob/master/configs/DukeMTMC/bagtricks_R50.yml ) | ImageNet | 87.1% | 76.9% | 41.6% | - |
| [BoT(R50-ibn) ](https://github.com/JDAI-CV/fast-reid/blob/master/configs/DukeMTMC/bagtricks_R50-ibn.yml ) | ImageNet | 89.6% | 79.1% | 44.4% | - |
| [BoT(S50) ](https://github.com/JDAI-CV/fast-reid/blob/master/configs/DukeMTMC/bagtricks_S50.yml ) | ImageNet | 87.8% | 77.7% | 39.6% | - |
| [BoT(R101-ibn) ](https://github.com/JDAI-CV/fast-reid/blob/master/configs/DukeMTMC/bagtricks_R101-ibn.yml ) | ImageNet| 91.1% | 81.3% | 47.7% | -|
2020-04-29 18:15:27 +08:00
**AGW**:
2020-05-29 10:10:43 +08:00
| Method | Pretrained | Rank@1 | mAP | mINP | download |
| :---: | :---: | :---: |:---: | :---: | :---:|
| [AGW(R50) ](https://github.com/JDAI-CV/fast-reid/blob/master/configs/DukeMTMC/AGW_R50.yml ) | ImageNet | 89.0% | 79.9% | 46.3% | - |
| [AGW(R50-ibn) ](https://github.com/JDAI-CV/fast-reid/blob/master/configs/DukeMTMC/AGW_R50-ibn.yml ) | ImageNet | 89.8% | 80.7% | 47.7% | - |
| [AGW(S50) ](https://github.com/JDAI-CV/fast-reid/blob/master/configs/DukeMTMC/AGW_S50.yml ) | ImageNet | 89.9% | 79.7% | 44.2% | -|
| [AGW(R101-ibn) ](https://github.com/JDAI-CV/fast-reid/blob/master/configs/DukeMTMC/AGW_R101-ibn.yml ) | ImageNet | 91.4% | 82.1% | 50.2% | -|
2020-04-29 18:15:27 +08:00
**SBS**:
2020-05-29 10:10:43 +08:00
| Method | Pretrained | Rank@1 | mAP | mINP | download |
| :---: | :---: | :---: |:---: | :---: | :---:|
| [SBS(R50) ](https://github.com/JDAI-CV/fast-reid/blob/master/configs/DukeMTMC/sbs_R50.yml ) | ImageNet | 89.6% | 79.8% | 44.6% | -|
| [SBS(R50-ibn) ](https://github.com/JDAI-CV/fast-reid/blob/master/configs/DukeMTMC/sbs_R50-ibn.yml ) | ImageNet | 91.3% | 81.6% | 47.6% | -|
| [SBS(S50) ](https://github.com/JDAI-CV/fast-reid/blob/master/configs/DukeMTMC/sbs_S50.yml ) | ImageNet | 90.5% | 79.1% | 42.7% | -|
| [SBS(R101-ibn) ](https://github.com/JDAI-CV/fast-reid/blob/master/configs/DukeMTMC/sbs_R101-ibn.yml ) | ImageNet | 92.4% | 83.2% | 49.7% | -|
2020-04-29 16:18:54 +08:00
2020-05-23 10:42:24 +08:00
**MGN**:
2020-05-29 10:10:43 +08:00
| Method | Pretrained | Rank@1 | mAP | mINP | download |
| :---: | :---: | :---: |:---: | :---: | :---:|
| [SBS(R50-ibn) ](https://github.com/JDAI-CV/fast-reid/blob/master/configs/DukeMTMC/mgn_R50-ibn.yml ) | ImageNet | 91.6% | 82.1% | 46.7% | - |
2020-05-23 10:42:24 +08:00
2020-04-29 16:18:54 +08:00
### MSMT17 Baseline
2020-04-29 18:15:27 +08:00
**BoT**:
2020-05-29 10:10:43 +08:00
| Method | Pretrained | Rank@1 | mAP | mINP | download |
| :---: | :---: | :---: |:---: | :---: | :---:|
| [BoT(R50) ](https://github.com/JDAI-CV/fast-reid/blob/master/configs/MSMT17/bagtricks_R50.yml ) | ImageNet | 72.3% | 48.3% | 9.7% | -|
| [BoT(R50-ibn) ](https://github.com/JDAI-CV/fast-reid/blob/master/configs/MSMT17/bagtricks_R50-ibn.yml ) | ImageNet | 77.0% | 54.4% | 12.5% | -|
| [BoT(S50) ](https://github.com/JDAI-CV/fast-reid/blob/master/configs/MSMT17/bagtricks_S50.yml ) | ImageNet | 80.4% | 59.2% | 15.9% | -|
| [BoT(R101-ibn) ](https://github.com/JDAI-CV/fast-reid/blob/master/configs/MSMT17/bagtricks_R101-ibn.yml ) | ImageNet| 79.0% | 57.5% | 14.6% | -|
2020-04-29 18:15:27 +08:00
**AGW**:
2020-05-29 10:10:43 +08:00
| Method | Pretrained | Rank@1 | mAP | mINP | download |
| :---: | :---: | :---: |:---: | :---: | :---:|
| [AGW(R50) ](https://github.com/JDAI-CV/fast-reid/blob/master/configs/MSMT17/AGW_R50.yml ) | ImageNet | 76.7% | 53.6% | 12.2% | -|
| [AGW(R50-ibn) ](https://github.com/JDAI-CV/fast-reid/blob/master/configs/MSMT17/AGW_R50-ibn.yml ) | ImageNet | 79.3% | 57.5% | 14.3% | -|
| [AGW(S50) ](https://github.com/JDAI-CV/fast-reid/blob/master/configs/MSMT17/AGW_S50.yml ) | ImageNet | 77.3% | 54.7% | 12.6% | -|
| [AGW(R101-ibn) ](https://github.com/JDAI-CV/fast-reid/blob/master/configs/MSMT17/AGW_R101-ibn.yml ) | ImageNet | 80.8% | 60.2% | 16.5% | -|
2020-04-29 18:15:27 +08:00
**SBS**:
2020-05-29 10:10:43 +08:00
| Method | Pretrained | Rank@1 | mAP | mINP | download |
| :---: | :---: | :---: |:---: | :---: | :---:|
| [SBS(R50) ](https://github.com/JDAI-CV/fast-reid/blob/master/configs/MSMT17/sbs_R50.yml ) | ImageNet | 83.3% | 59.9% | 14.6% | -|
| [SBS(R50-ibn) ](https://github.com/JDAI-CV/fast-reid/blob/master/configs/MSMT17/sbs_R50-ibn.yml ) | ImageNet | 84.0% | 61.2% | 15.5% | -|
| [SBS(S50) ](https://github.com/JDAI-CV/fast-reid/blob/master/configs/MSMT17/sbs_S50.yml ) | ImageNet | 82.6% | 58.2% | 13.2% | -|
| [SBS(R101-ibn) ](https://github.com/JDAI-CV/fast-reid/blob/master/configs/MSMT17/sbs_R101-ibn.yml ) | ImageNet | 85.1% | 63.3% | 16.6% | -|
2020-04-29 18:33:11 +08:00
2020-05-23 10:42:24 +08:00
**MGN**:
2020-05-29 10:10:43 +08:00
| Method | Pretrained | Rank@1 | mAP | mINP | download |
| :---: | :---: | :---: |:---: | :---: | :---:|
| [SBS(R50-ibn) ](https://github.com/JDAI-CV/fast-reid/blob/master/configs/MSMT17/mgn_R50-ibn.yml ) | ImageNet | 85.1% | 65.4% | 18.4% | -|
2020-05-23 10:42:24 +08:00
2020-04-29 18:33:11 +08:00
### VeRi Baseline
2020-05-22 13:43:34 +08:00
**SBS**:
2020-04-29 18:33:11 +08:00
2020-05-29 10:10:43 +08:00
| Method | Pretrained | Rank@1 | mAP | mINP | download |
| :---: | :---: | :---: |:---: | :---: | :---:|
| BoT(R50-ibn) | ImageNet | 97.0% | 81.9% | 46.3% | -|
2020-04-29 18:33:11 +08:00
### VehicleID Baseline
2020-05-29 10:10:43 +08:00
**BoT**:
2020-05-27 13:05:15 +08:00
Method: BoT(R50-ibn+gem pooling+weighted triplet+soft margin)
2020-05-25 16:36:08 +08:00
Test protocol: 10-fold cross-validation
2020-04-29 18:33:11 +08:00
2020-05-29 10:10:43 +08:00
| Testset size | Pretrained | Rank@1 | Rank@5 | download |
| :---: | :---: | :---: |:---: | :---:|
| Small(800) | ImageNet | 86.6% | 97.9% | -|
| Medium(1600) | ImageNet | 82.9% | 96.0% | -|
| Large(2400) | ImageNet | 80.6% | 93.9% | -|
2020-04-29 18:33:11 +08:00
### VERI-Wild Baseline
2020-05-27 13:05:15 +08:00
**BoT**:
2020-05-22 13:43:34 +08:00
Method: BoT(R50-ibn+gem pooling+weighted triplet+soft margin)
2020-04-29 18:33:11 +08:00
2020-05-29 10:10:43 +08:00
| Testset size | Pretrained | Rank@1 | mAP | mINP | download |
| :---: | :---: | :---: |:---: | :---: | :---:|
| Small(3000) | ImageNet | 96.4% | 87.7% | 69.2% | -|
| Medium(5000) | ImageNet | 95.1% | 83.5% | 61.2% | -|
| Large(10000) | ImageNet | 92.5% | 77.3% | 49.8% | -|