2020-04-27 15:12:01 +08:00
# Ranger deep learning optimizer - RAdam + Lookahead + Gradient Centralization, combined into one optimizer.
# https://github.com/lessw2020/Ranger-Deep-Learning-Optimizer
# and/or
# https://github.com/lessw2020/Best-Deep-Learning-Optimizers
# Ranger has now been used to capture 12 records on the FastAI leaderboard.
# This version = 20.4.11
# Credits:
# Gradient Centralization --> https://arxiv.org/abs/2004.01461v2 (a new optimization technique for DNNs), github: https://github.com/Yonghongwei/Gradient-Centralization
# RAdam --> https://github.com/LiyuanLucasLiu/RAdam
# Lookahead --> rewritten by lessw2020, but big thanks to Github @LonePatient and @RWightman for ideas from their code.
# Lookahead paper --> MZhang,G Hinton https://arxiv.org/abs/1907.08610
# summary of changes:
# 4/11/20 - add gradient centralization option. Set new testing benchmark for accuracy with it, toggle with use_gc flag at init.
# full code integration with all updates at param level instead of group, moves slow weights into state dict (from generic weights),
# supports group learning rates (thanks @SHolderbach), fixes sporadic load from saved model issues.
# changes 8/31/19 - fix references to *self*.N_sma_threshold;
# changed eps to 1e-5 as better default than 1e-8.
2020-03-25 10:58:26 +08:00
import math
2020-04-27 15:12:01 +08:00
2020-03-25 10:58:26 +08:00
import torch
2020-04-27 15:12:01 +08:00
from torch . optim . optimizer import Optimizer
class Ranger ( Optimizer ) :
def __init__ ( self , params , lr = 1e-3 , # lr
alpha = 0.5 , k = 6 , N_sma_threshhold = 5 , # Ranger options
betas = ( .95 , 0.999 ) , eps = 1e-5 , weight_decay = 0 , # Adam options
use_gc = True , gc_conv_only = False
# Gradient centralization on or off, applied to conv layers only or conv + fc layers
) :
# parameter checks
if not 0.0 < = alpha < = 1.0 :
raise ValueError ( f ' Invalid slow update rate: { alpha } ' )
if not 1 < = k :
raise ValueError ( f ' Invalid lookahead steps: { k } ' )
if not lr > 0 :
raise ValueError ( f ' Invalid Learning Rate: { lr } ' )
if not eps > 0 :
raise ValueError ( f ' Invalid eps: { eps } ' )
# parameter comments:
# beta1 (momentum) of .95 seems to work better than .90...
# N_sma_threshold of 5 seems better in testing than 4.
# In both cases, worth testing on your dataset (.90 vs .95, 4 vs 5) to make sure which works best for you.
# prep defaults and init torch.optim base
defaults = dict ( lr = lr , alpha = alpha , k = k , step_counter = 0 , betas = betas , N_sma_threshhold = N_sma_threshhold ,
eps = eps , weight_decay = weight_decay )
super ( ) . __init__ ( params , defaults )
# adjustable threshold
self . N_sma_threshhold = N_sma_threshhold
# look ahead params
self . alpha = alpha
self . k = k
# radam buffer for state
self . radam_buffer = [ [ None , None , None ] for ind in range ( 10 ) ]
# gc on or off
self . use_gc = use_gc
# level of gradient centralization
self . gc_gradient_threshold = 3 if gc_conv_only else 1
print ( f " Ranger optimizer loaded. \n Gradient Centralization usage = { self . use_gc } " )
if ( self . use_gc and self . gc_gradient_threshold == 1 ) :
print ( f " GC applied to both conv and fc layers " )
elif ( self . use_gc and self . gc_gradient_threshold == 3 ) :
print ( f " GC applied to conv layers only " )
def __setstate__ ( self , state ) :
print ( " set state called " )
super ( Ranger , self ) . __setstate__ ( state )
def step ( self , closure = None ) :
loss = None
# note - below is commented out b/c I have other work that passes back the loss as a float, and thus not a callable closure.
# Uncomment if you need to use the actual closure...
# if closure is not None:
# loss = closure()
# Evaluate averages and grad, update param tensors
for group in self . param_groups :
for p in group [ ' params ' ] :
if p . grad is None :
continue
grad = p . grad . data . float ( )
if grad . is_sparse :
raise RuntimeError ( ' Ranger optimizer does not support sparse gradients ' )
p_data_fp32 = p . data . float ( )
state = self . state [ p ] # get state dict for this param
if len ( state ) == 0 : # if first time to run...init dictionary with our desired entries
# if self.first_run_check==0:
# self.first_run_check=1
# print("Initializing slow buffer...should not see this at load from saved model!")
state [ ' step ' ] = 0
state [ ' exp_avg ' ] = torch . zeros_like ( p_data_fp32 )
state [ ' exp_avg_sq ' ] = torch . zeros_like ( p_data_fp32 )
# look ahead weight storage now in state dict
state [ ' slow_buffer ' ] = torch . empty_like ( p . data )
state [ ' slow_buffer ' ] . copy_ ( p . data )
else :
state [ ' exp_avg ' ] = state [ ' exp_avg ' ] . type_as ( p_data_fp32 )
state [ ' exp_avg_sq ' ] = state [ ' exp_avg_sq ' ] . type_as ( p_data_fp32 )
# begin computations
exp_avg , exp_avg_sq = state [ ' exp_avg ' ] , state [ ' exp_avg_sq ' ]
beta1 , beta2 = group [ ' betas ' ]
# GC operation for Conv layers and FC layers
if grad . dim ( ) > self . gc_gradient_threshold :
grad . add_ ( - grad . mean ( dim = tuple ( range ( 1 , grad . dim ( ) ) ) , keepdim = True ) )
state [ ' step ' ] + = 1
# compute variance mov avg
exp_avg_sq . mul_ ( beta2 ) . addcmul_ ( 1 - beta2 , grad , grad )
# compute mean moving avg
exp_avg . mul_ ( beta1 ) . add_ ( 1 - beta1 , grad )
buffered = self . radam_buffer [ int ( state [ ' step ' ] % 10 ) ]
if state [ ' step ' ] == buffered [ 0 ] :
N_sma , step_size = buffered [ 1 ] , buffered [ 2 ]
else :
buffered [ 0 ] = state [ ' step ' ]
beta2_t = beta2 * * state [ ' step ' ]
N_sma_max = 2 / ( 1 - beta2 ) - 1
N_sma = N_sma_max - 2 * state [ ' step ' ] * beta2_t / ( 1 - beta2_t )
buffered [ 1 ] = N_sma
if N_sma > self . N_sma_threshhold :
step_size = math . sqrt (
( 1 - beta2_t ) * ( N_sma - 4 ) / ( N_sma_max - 4 ) * ( N_sma - 2 ) / N_sma * N_sma_max / (
N_sma_max - 2 ) ) / ( 1 - beta1 * * state [ ' step ' ] )
else :
step_size = 1.0 / ( 1 - beta1 * * state [ ' step ' ] )
buffered [ 2 ] = step_size
if group [ ' weight_decay ' ] != 0 :
p_data_fp32 . add_ ( - group [ ' weight_decay ' ] * group [ ' lr ' ] , p_data_fp32 )
# apply lr
if N_sma > self . N_sma_threshhold :
denom = exp_avg_sq . sqrt ( ) . add_ ( group [ ' eps ' ] )
p_data_fp32 . addcdiv_ ( - step_size * group [ ' lr ' ] , exp_avg , denom )
else :
p_data_fp32 . add_ ( - step_size * group [ ' lr ' ] , exp_avg )
p . data . copy_ ( p_data_fp32 )
2020-03-25 10:58:26 +08:00
2020-04-27 15:12:01 +08:00
# integrated look ahead...
# we do it at the param level instead of group level
if state [ ' step ' ] % group [ ' k ' ] == 0 :
slow_p = state [ ' slow_buffer ' ] # get access to slow param tensor
slow_p . add_ ( self . alpha , p . data - slow_p ) # (fast weights - slow weights) * alpha
p . data . copy_ ( slow_p ) # copy interpolated weights to RAdam param tensor
2020-03-25 10:58:26 +08:00
2020-04-27 15:12:01 +08:00
return loss