fast-reid/fastreid/modeling/backbones/resnet.py

228 lines
8.1 KiB
Python
Raw Normal View History

2020-02-10 07:38:56 +08:00
# encoding: utf-8
"""
@author: liaoxingyu
@contact: sherlockliao01@gmail.com
"""
import logging
import math
import torch
from torch import nn
from torch.utils import model_zoo
from .build import BACKBONE_REGISTRY
from ...layers import IBN, SELayer, Non_local
2020-02-10 07:38:56 +08:00
model_urls = {
18: 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
34: 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
50: 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
101: 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
152: 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
}
__all__ = ['ResNet', 'Bottleneck']
class Bottleneck(nn.Module):
expansion = 4
2020-03-25 10:58:26 +08:00
def __init__(self, inplanes, planes, with_ibn=False, with_se=False, stride=1, downsample=None, reduction=16):
2020-02-10 07:38:56 +08:00
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
if with_ibn:
self.bn1 = IBN(planes)
else:
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(planes * 4)
self.relu = nn.ReLU(inplace=True)
2020-03-25 10:58:26 +08:00
if with_se:
self.se = SELayer(planes * 4, reduction)
else:
self.se = nn.Identity()
2020-02-10 07:38:56 +08:00
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
2020-03-25 10:58:26 +08:00
out = self.se(out)
2020-02-10 07:38:56 +08:00
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class ResNet(nn.Module):
def __init__(self, last_stride, with_ibn, with_se, with_nl, block, layers, non_layers):
2020-02-10 07:38:56 +08:00
scale = 64
self.inplanes = scale
super().__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
2020-03-25 10:58:26 +08:00
self.layer1 = self._make_layer(block, scale, layers[0], with_ibn=with_ibn, with_se=with_se)
self.layer2 = self._make_layer(block, scale * 2, layers[1], stride=2, with_ibn=with_ibn, with_se=with_se)
self.layer3 = self._make_layer(block, scale * 4, layers[2], stride=2, with_ibn=with_ibn, with_se=with_se)
self.layer4 = self._make_layer(block, scale * 8, layers[3], stride=last_stride, with_se=with_se)
2020-02-10 07:38:56 +08:00
self.random_init()
if with_nl:
self._build_nonlocal(layers, non_layers)
else:
self.NL_1_idx = self.NL_2_idx = self.NL_3_idx = self.NL_4_idx = []
2020-03-25 10:58:26 +08:00
def _make_layer(self, block, planes, blocks, stride=1, with_ibn=False, with_se=False):
2020-02-10 07:38:56 +08:00
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * block.expansion),
)
layers = []
if planes == 512:
with_ibn = False
2020-03-25 10:58:26 +08:00
layers.append(block(self.inplanes, planes, with_ibn, with_se, stride, downsample))
2020-02-10 07:38:56 +08:00
self.inplanes = planes * block.expansion
for i in range(1, blocks):
2020-03-25 10:58:26 +08:00
layers.append(block(self.inplanes, planes, with_ibn, with_se))
2020-02-10 07:38:56 +08:00
return nn.Sequential(*layers)
def _build_nonlocal(self, layers, non_layers):
self.NL_1 = nn.ModuleList(
[Non_local(256) for _ in range(non_layers[0])])
self.NL_1_idx = sorted([layers[0] - (i + 1) for i in range(non_layers[0])])
self.NL_2 = nn.ModuleList(
[Non_local(512) for _ in range(non_layers[1])])
self.NL_2_idx = sorted([layers[1] - (i + 1) for i in range(non_layers[1])])
self.NL_3 = nn.ModuleList(
[Non_local(1024) for _ in range(non_layers[2])])
self.NL_3_idx = sorted([layers[2] - (i + 1) for i in range(non_layers[2])])
self.NL_4 = nn.ModuleList(
[Non_local(2048) for _ in range(non_layers[3])])
self.NL_4_idx = sorted([layers[3] - (i + 1) for i in range(non_layers[3])])
2020-02-10 07:38:56 +08:00
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
NL1_counter = 0
if len(self.NL_1_idx) == 0:
self.NL_1_idx = [-1]
for i in range(len(self.layer1)):
x = self.layer1[i](x)
if i == self.NL_1_idx[NL1_counter]:
_, C, H, W = x.shape
x = self.NL_1[NL1_counter](x)
NL1_counter += 1
# Layer 2
NL2_counter = 0
if len(self.NL_2_idx) == 0:
self.NL_2_idx = [-1]
for i in range(len(self.layer2)):
x = self.layer2[i](x)
if i == self.NL_2_idx[NL2_counter]:
_, C, H, W = x.shape
x = self.NL_2[NL2_counter](x)
NL2_counter += 1
# Layer 3
NL3_counter = 0
if len(self.NL_3_idx) == 0:
self.NL_3_idx = [-1]
for i in range(len(self.layer3)):
x = self.layer3[i](x)
if i == self.NL_3_idx[NL3_counter]:
_, C, H, W = x.shape
x = self.NL_3[NL3_counter](x)
NL3_counter += 1
# Layer 4
NL4_counter = 0
if len(self.NL_4_idx) == 0:
self.NL_4_idx = [-1]
for i in range(len(self.layer4)):
x = self.layer4[i](x)
if i == self.NL_4_idx[NL4_counter]:
_, C, H, W = x.shape
x = self.NL_4[NL4_counter](x)
NL4_counter += 1
2020-02-10 07:38:56 +08:00
return x
def random_init(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
nn.init.normal_(m.weight, 0, math.sqrt(2. / n))
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
@BACKBONE_REGISTRY.register()
def build_resnet_backbone(cfg):
"""
Create a ResNet instance from config.
Returns:
ResNet: a :class:`ResNet` instance.
"""
# fmt: off
pretrain = cfg.MODEL.BACKBONE.PRETRAIN
pretrain_path = cfg.MODEL.BACKBONE.PRETRAIN_PATH
last_stride = cfg.MODEL.BACKBONE.LAST_STRIDE
with_ibn = cfg.MODEL.BACKBONE.WITH_IBN
with_se = cfg.MODEL.BACKBONE.WITH_SE
with_nl = cfg.MODEL.BACKBONE.WITH_NL
2020-02-10 07:38:56 +08:00
depth = cfg.MODEL.BACKBONE.DEPTH
num_blocks_per_stage = {50: [3, 4, 6, 3], 101: [3, 4, 23, 3], 152: [3, 8, 36, 3], }[depth]
nl_layers_per_stage = {50: [0, 2, 3, 0], 101: [0, 2, 3, 0]}[depth]
model = ResNet(last_stride, with_ibn, with_se, with_nl, Bottleneck, num_blocks_per_stage, nl_layers_per_stage)
2020-02-10 07:38:56 +08:00
if pretrain:
if not with_ibn:
# original resnet
state_dict = model_zoo.load_url(model_urls[depth])
else:
# ibn resnet
state_dict = torch.load(pretrain_path)['state_dict']
# remove module in name
new_state_dict = {}
for k in state_dict:
new_k = '.'.join(k.split('.')[1:])
2020-03-25 10:58:26 +08:00
if new_k in model.state_dict() and (model.state_dict()[new_k].shape == state_dict[k].shape):
2020-02-10 07:38:56 +08:00
new_state_dict[new_k] = state_dict[k]
state_dict = new_state_dict
res = model.load_state_dict(state_dict, strict=False)
logger = logging.getLogger(__name__)
logger.info('missing keys is {}'.format(res.missing_keys))
logger.info('unexpected keys is {}'.format(res.unexpected_keys))
2020-02-10 07:38:56 +08:00
return model