2020-05-21 23:58:35 +08:00
|
|
|
# encoding: utf-8
|
|
|
|
"""
|
|
|
|
@author: lingxiao he
|
|
|
|
@contact: helingxiao3@jd.com
|
|
|
|
"""
|
|
|
|
|
2020-05-28 11:14:13 +08:00
|
|
|
from fastreid.layers import *
|
2020-05-21 23:58:35 +08:00
|
|
|
from fastreid.modeling.heads.build import REID_HEADS_REGISTRY
|
|
|
|
from fastreid.utils.weight_init import weights_init_classifier, weights_init_kaiming
|
|
|
|
|
|
|
|
|
|
|
|
class OcclusionUnit(nn.Module):
|
|
|
|
def __init__(self, in_planes=2048):
|
|
|
|
super(OcclusionUnit, self).__init__()
|
|
|
|
self.MaxPool1 = nn.MaxPool2d(kernel_size=2, stride=2, padding=0)
|
|
|
|
self.MaxPool2 = nn.MaxPool2d(kernel_size=4, stride=2, padding=0)
|
|
|
|
self.MaxPool3 = nn.MaxPool2d(kernel_size=6, stride=2, padding=0)
|
|
|
|
self.MaxPool4 = nn.MaxPool2d(kernel_size=8, stride=2, padding=0)
|
|
|
|
self.mask_layer = nn.Linear(in_planes, 1, bias=False)
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
SpaFeat1 = self.MaxPool1(x) # shape: [n, c, h, w]
|
|
|
|
SpaFeat2 = self.MaxPool2(x)
|
|
|
|
SpaFeat3 = self.MaxPool3(x)
|
|
|
|
SpaFeat4 = self.MaxPool4(x)
|
|
|
|
|
|
|
|
Feat1 = SpaFeat1.view(SpaFeat1.size(0), SpaFeat1.size(1), SpaFeat1.size(2) * SpaFeat1.size(3))
|
|
|
|
Feat2 = SpaFeat2.view(SpaFeat2.size(0), SpaFeat2.size(1), SpaFeat2.size(2) * SpaFeat2.size(3))
|
|
|
|
Feat3 = SpaFeat3.view(SpaFeat3.size(0), SpaFeat3.size(1), SpaFeat3.size(2) * SpaFeat3.size(3))
|
|
|
|
Feat4 = SpaFeat4.view(SpaFeat4.size(0), SpaFeat4.size(1), SpaFeat4.size(2) * SpaFeat4.size(3))
|
|
|
|
SpatialFeatAll = torch.cat((Feat1, Feat2, Feat3, Feat4), 2)
|
|
|
|
SpatialFeatAll = SpatialFeatAll.transpose(1, 2) # shape: [n, c, m]
|
|
|
|
y = self.mask_layer(SpatialFeatAll)
|
2020-05-28 11:14:13 +08:00
|
|
|
mask_weight = torch.sigmoid(y[:, :, 0])
|
2020-07-10 16:27:22 +08:00
|
|
|
|
2020-06-10 17:43:56 +08:00
|
|
|
feat_dim = SpaFeat1.size(2) * SpaFeat1.size(3)
|
|
|
|
mask_score = F.normalize(mask_weight[:, :feat_dim], p=1, dim=1)
|
2020-05-21 23:58:35 +08:00
|
|
|
mask_weight_norm = F.normalize(mask_weight, p=1, dim=1)
|
|
|
|
mask_score = mask_score.unsqueeze(1)
|
|
|
|
|
|
|
|
SpaFeat1 = SpaFeat1.transpose(1, 2)
|
|
|
|
SpaFeat1 = SpaFeat1.transpose(2, 3) # shape: [n, h, w, c]
|
|
|
|
SpaFeat1 = SpaFeat1.view((SpaFeat1.size(0), SpaFeat1.size(1) * SpaFeat1.size(2), -1)) # shape: [n, h*w, c]
|
2020-05-28 11:14:13 +08:00
|
|
|
|
2020-05-21 23:58:35 +08:00
|
|
|
global_feats = mask_score.matmul(SpaFeat1).view(SpaFeat1.shape[0], -1, 1, 1)
|
|
|
|
return global_feats, mask_weight, mask_weight_norm
|
|
|
|
|
|
|
|
|
|
|
|
@REID_HEADS_REGISTRY.register()
|
|
|
|
class DSRHead(nn.Module):
|
|
|
|
def __init__(self, cfg, in_feat, num_classes, pool_layer=nn.AdaptiveAvgPool2d(1)):
|
|
|
|
super().__init__()
|
|
|
|
|
|
|
|
self.pool_layer = pool_layer
|
|
|
|
|
|
|
|
self.occ_unit = OcclusionUnit(in_planes=in_feat)
|
|
|
|
self.MaxPool1 = nn.MaxPool2d(kernel_size=2, stride=2, padding=0)
|
|
|
|
self.MaxPool2 = nn.MaxPool2d(kernel_size=4, stride=2, padding=0)
|
|
|
|
self.MaxPool3 = nn.MaxPool2d(kernel_size=6, stride=2, padding=0)
|
|
|
|
self.MaxPool4 = nn.MaxPool2d(kernel_size=8, stride=2, padding=0)
|
|
|
|
|
|
|
|
self.bnneck = get_norm(cfg.MODEL.HEADS.NORM, in_feat, cfg.MODEL.HEADS.NORM_SPLIT, bias_freeze=True)
|
|
|
|
self.bnneck.apply(weights_init_kaiming)
|
2020-05-28 11:14:13 +08:00
|
|
|
|
2020-05-21 23:58:35 +08:00
|
|
|
self.bnneck_occ = get_norm(cfg.MODEL.HEADS.NORM, in_feat, cfg.MODEL.HEADS.NORM_SPLIT, bias_freeze=True)
|
|
|
|
self.bnneck_occ.apply(weights_init_kaiming)
|
|
|
|
|
|
|
|
# identity classification layer
|
|
|
|
if cfg.MODEL.HEADS.CLS_LAYER == 'linear':
|
|
|
|
self.classifier = nn.Linear(in_feat, num_classes, bias=False)
|
|
|
|
self.classifier_occ = nn.Linear(in_feat, num_classes, bias=False)
|
|
|
|
elif cfg.MODEL.HEADS.CLS_LAYER == 'arcface':
|
2020-07-15 15:08:53 +08:00
|
|
|
self.classifier = Arcface(cfg, in_feat, num_classes)
|
|
|
|
self.classifier_occ = Arcface(cfg, in_feat, num_classes)
|
2020-05-21 23:58:35 +08:00
|
|
|
elif cfg.MODEL.HEADS.CLS_LAYER == 'circle':
|
2020-07-15 15:08:53 +08:00
|
|
|
self.classifier = Circle(cfg, in_feat, num_classes)
|
|
|
|
self.classifier_occ = Circle(cfg, in_feat, num_classes)
|
2020-05-21 23:58:35 +08:00
|
|
|
else:
|
|
|
|
self.classifier = nn.Linear(in_feat, num_classes, bias=False)
|
|
|
|
self.classifier_occ = nn.Linear(in_feat, num_classes, bias=False)
|
2020-07-15 15:08:53 +08:00
|
|
|
self.classifier.apply(weights_init_classifier)
|
|
|
|
self.classifier_occ.apply(weights_init_classifier)
|
2020-05-21 23:58:35 +08:00
|
|
|
|
|
|
|
def forward(self, features, targets=None):
|
|
|
|
"""
|
|
|
|
See :class:`ReIDHeads.forward`.
|
|
|
|
"""
|
|
|
|
SpaFeat1 = self.MaxPool1(features) # shape: [n, c, h, w]
|
|
|
|
SpaFeat2 = self.MaxPool2(features)
|
|
|
|
SpaFeat3 = self.MaxPool3(features)
|
|
|
|
SpaFeat4 = self.MaxPool4(features)
|
|
|
|
|
|
|
|
Feat1 = SpaFeat1.view(SpaFeat1.size(0), SpaFeat1.size(1), SpaFeat1.size(2) * SpaFeat1.size(3))
|
|
|
|
Feat2 = SpaFeat2.view(SpaFeat2.size(0), SpaFeat2.size(1), SpaFeat2.size(2) * SpaFeat2.size(3))
|
|
|
|
Feat3 = SpaFeat3.view(SpaFeat3.size(0), SpaFeat3.size(1), SpaFeat3.size(2) * SpaFeat3.size(3))
|
|
|
|
Feat4 = SpaFeat4.view(SpaFeat4.size(0), SpaFeat4.size(1), SpaFeat4.size(2) * SpaFeat4.size(3))
|
|
|
|
SpatialFeatAll = torch.cat((Feat1, Feat2, Feat3, Feat4), dim=2)
|
|
|
|
|
|
|
|
foreground_feat, mask_weight, mask_weight_norm = self.occ_unit(features)
|
|
|
|
bn_foreground_feat = self.bnneck_occ(foreground_feat)
|
2020-05-28 11:14:13 +08:00
|
|
|
bn_foreground_feat = bn_foreground_feat[..., 0, 0]
|
2020-05-21 23:58:35 +08:00
|
|
|
|
|
|
|
# Evaluation
|
|
|
|
if not self.training:
|
|
|
|
return bn_foreground_feat, SpatialFeatAll, mask_weight_norm
|
2020-07-10 16:27:22 +08:00
|
|
|
|
2020-05-21 23:58:35 +08:00
|
|
|
# Training
|
|
|
|
global_feat = self.pool_layer(features)
|
|
|
|
bn_feat = self.bnneck(global_feat)
|
2020-05-28 11:14:13 +08:00
|
|
|
bn_feat = bn_feat[..., 0, 0]
|
2020-05-21 23:58:35 +08:00
|
|
|
|
|
|
|
try:
|
2020-07-15 15:08:53 +08:00
|
|
|
cls_outputs = self.classifier(bn_feat)
|
|
|
|
fore_cls_outputs = self.classifier_occ(bn_foreground_feat)
|
2020-05-21 23:58:35 +08:00
|
|
|
except TypeError:
|
2020-07-15 15:08:53 +08:00
|
|
|
cls_outputs = self.classifier(bn_feat, targets)
|
|
|
|
fore_cls_outputs = self.classifier_occ(bn_foreground_feat, targets)
|
|
|
|
|
|
|
|
pred_class_logits = F.linear(bn_foreground_feat, self.classifier.weight)
|
|
|
|
|
|
|
|
return cls_outputs, fore_cls_outputs, pred_class_logits, global_feat[..., 0, 0], foreground_feat[..., 0, 0]
|