mirror of https://github.com/JDAI-CV/fast-reid.git
83 lines
2.6 KiB
Markdown
83 lines
2.6 KiB
Markdown
|
# Bag of Tricks and A Strong ReID Baseline in FastReID
|
||
|
|
||
|
Bag of Tricks and A Strong Baseline for Deep Person Re-identification. CVPRW2019, Oral.
|
||
|
|
||
|
[Hao Luo\*](https://github.com/michuanhaohao) [Youzhi Gu\*](https://github.com/shaoniangu) [Xingyu Liao\*](https://github.com/L1aoXingyu) [Shenqi Lai](https://github.com/xiaolai-sqlai)
|
||
|
|
||
|
A Strong Baseline and Batch Normalization Neck for Deep Person Re-identification. IEEE Transactions on Multimedia (Accepted).
|
||
|
|
||
|
[[Journal Version(TMM)]](https://ieeexplore.ieee.org/document/8930088)
|
||
|
[[PDF]](http://openaccess.thecvf.com/content_CVPRW_2019/papers/TRMTMCT/Luo_Bag_of_Tricks_and_a_Strong_Baseline_for_Deep_Person_CVPRW_2019_paper.pdf)
|
||
|
[[Slides]](https://drive.google.com/open?id=1h9SgdJenvfoNp9PTUxPiz5_K5HFCho-V)
|
||
|
[[Poster]](https://drive.google.com/open?id=1izZYAwylBsrldxSMqHCH432P6hnyh1vR)
|
||
|
|
||
|
## Training
|
||
|
|
||
|
To train a model, run
|
||
|
|
||
|
```bash
|
||
|
CUDA_VISIBLE_DEVICES=gpus python train_net.py --config-file <config.yml>
|
||
|
```
|
||
|
|
||
|
For example, to launch a end-to-end baseline training on market1501 dataset on GPU#1,
|
||
|
one should excute:
|
||
|
|
||
|
```bash
|
||
|
CUDA_VISIBLE_DEVICES=1 python train_net.py --config-file='configs/bagtricks_market1501.yml'
|
||
|
```
|
||
|
|
||
|
## Evaluation
|
||
|
|
||
|
To evaluate the model in test set, run similarly:
|
||
|
|
||
|
```bash
|
||
|
CUDA_VISIBLE_DEVICES=gpus python train_net.py --config-file <configs.yaml> --eval-only MODEL.WEIGHTS model.pth
|
||
|
```
|
||
|
|
||
|
## Experimental Results
|
||
|
|
||
|
You can reproduce the results by simply excute
|
||
|
|
||
|
```bash
|
||
|
sh scripts/train_market.sh
|
||
|
sh scripts/train_duke.sh
|
||
|
sh scripts/train_msmt.sh
|
||
|
```
|
||
|
### Market1501 dataset
|
||
|
|
||
|
| Method | Pretrained | Rank@1 | mAP | mINP |
|
||
|
| :---: | :---: | :---: |:---: | :---: |
|
||
|
| BagTricks | ImageNet | 93.9% | 84.9% | 57.1% |
|
||
|
|
||
|
### DukeMTMC dataset
|
||
|
|
||
|
| Method | Pretrained | Rank@1 | mAP | mINP |
|
||
|
| :---: | :---: | :---: |:---: | :---: |
|
||
|
| BagTricks | ImageNet | 87.1% | 76.4% | 39.2% |
|
||
|
|
||
|
### MSMT17 dataset
|
||
|
|
||
|
| Method | Pretrained | Rank@1 | mAP | mINP |
|
||
|
| :---: | :---: | :---: |:---: | :---: |
|
||
|
| BagTricks | ImageNet | 72.2% | 48.4% | 9.6% |
|
||
|
|
||
|
|
||
|
```
|
||
|
@InProceedings{Luo_2019_CVPR_Workshops,
|
||
|
author = {Luo, Hao and Gu, Youzhi and Liao, Xingyu and Lai, Shenqi and Jiang, Wei},
|
||
|
title = {Bag of Tricks and a Strong Baseline for Deep Person Re-Identification},
|
||
|
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops},
|
||
|
month = {June},
|
||
|
year = {2019}
|
||
|
}
|
||
|
|
||
|
@ARTICLE{Luo_2019_Strong_TMM,
|
||
|
author={H. {Luo} and W. {Jiang} and Y. {Gu} and F. {Liu} and X. {Liao} and S. {Lai} and J. {Gu}},
|
||
|
journal={IEEE Transactions on Multimedia},
|
||
|
title={A Strong Baseline and Batch Normalization Neck for Deep Person Re-identification},
|
||
|
year={2019},
|
||
|
pages={1-1},
|
||
|
doi={10.1109/TMM.2019.2958756},
|
||
|
ISSN={1941-0077},
|
||
|
}
|
||
|
```
|