fast-reid/README.md

62 lines
2.0 KiB
Markdown
Raw Normal View History

2018-07-26 08:18:25 +08:00
# ReID_baseline
2018-09-08 11:25:06 +08:00
Baseline model (with bottleneck) for person ReID (using softmax and triplet loss). This is PyTorch version, [mxnet version](https://github.com/L1aoXingyu/reid_baseline_gluon) has a better result and more SOTA methods.
2018-06-08 12:59:03 +08:00
2018-08-02 23:18:09 +08:00
We support
- multi-GPU training
- easy dataset preparation
- end-to-end training and evaluation
2018-06-13 16:53:32 +08:00
2018-08-02 23:18:09 +08:00
## Get Started
1. `cd` to folder where you want to download this repo
2. Run `git clone https://github.com/L1aoXingyu/reid_baseline.git`
3. Install dependencies:
2018-08-08 16:11:01 +08:00
- [pytorch 0.4](https://pytorch.org/)
2018-08-02 23:18:09 +08:00
- torchvision
- tensorflow (for tensorboard)
- [tensorboardX](https://github.com/lanpa/tensorboardX)
4. Prepare dataset
Create a directory to store reid datasets under this repo via
```bash
cd reid_baseline
mkdir data
```
1. Download dataset to `data/` from http://www.liangzheng.org/Project/project_reid.html
2. Extract dataset and rename to `market1501`. The data structure would like:
```
market1501/
bounding_box_test/
bounding_box_train/
```
5. Prepare pretrained model if you don't have
```python
from torchvision import models
models.resnet50(pretrained=True)
```
Then it will automatically download model in `~.torch/models/`, you should set this path in `config.py`
## Train
You can run
```bash
bash scripts/train_triplet_softmax.sh
```
in `reid_baseline` folder if you want to train with softmax and triplet loss. You can find others train scripts in `scripts`.
2018-06-13 16:53:32 +08:00
## Results
2018-09-19 18:17:06 +08:00
**network architecture**
2018-10-18 19:00:52 +08:00
<img src='https://ws3.sinaimg.cn/large/006tNbRwly1fvh3ekjh12j315k0j4q58.jpg' width='500'>
2018-09-19 18:17:06 +08:00
2018-10-18 19:03:34 +08:00
| config | Market1501 |
| --- | -- |
| bs(32) size(384,128) softmax | 92.2 (78.5) |
| bs(64) size(384,128) softmax | 92.5 (79.6) |
| bs(32) size(256,128) softmax | 92.0 (78.4) |
| bs(64) size(256,128) softmax | 91.7 (78.3) |
| bs(128) size(256,128) softmax | 91.2 (77.4) |
| triplet(p=32,k=4) size(256,128) | 88.3 (73.8) |
| triplet(p=16,k=4)+softmax size(384,128) | 93.1 (82.0) |
| triplet(p=24,k=4)+softmax size(384,128) | 91.7 (79.0) |
2018-06-13 16:53:32 +08:00