2018-06-08 12:59:03 +08:00
|
|
|
# encoding: utf-8
|
|
|
|
"""
|
|
|
|
@author: liaoxingyu
|
|
|
|
@contact: sherlockliao01@gmail.com
|
|
|
|
"""
|
|
|
|
|
|
|
|
from __future__ import absolute_import
|
|
|
|
from __future__ import division
|
|
|
|
from __future__ import print_function
|
|
|
|
from __future__ import unicode_literals
|
|
|
|
|
2018-10-18 19:04:28 +08:00
|
|
|
import math
|
2018-06-08 12:59:03 +08:00
|
|
|
import random
|
|
|
|
|
|
|
|
from PIL import Image
|
|
|
|
|
|
|
|
|
|
|
|
class Random2DTranslation(object):
|
|
|
|
"""
|
|
|
|
With a probability, first increase image size to (1 + 1/8), and then perform random crop.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
height (int): target height.
|
|
|
|
width (int): target width.
|
|
|
|
p (float): probability of performing this transformation. Default: 0.5.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, height, width, p=0.5, interpolation=Image.BILINEAR):
|
|
|
|
self.height = height
|
|
|
|
self.width = width
|
|
|
|
self.p = p
|
|
|
|
self.interpolation = interpolation
|
|
|
|
|
|
|
|
def __call__(self, img):
|
|
|
|
"""
|
|
|
|
Args:
|
|
|
|
img (PIL Image): Image to be cropped.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
PIL Image: Cropped image.
|
|
|
|
"""
|
|
|
|
if random.random() < self.p:
|
|
|
|
return img.resize((self.width, self.height), self.interpolation)
|
|
|
|
new_width, new_height = int(
|
|
|
|
round(self.width * 1.125)), int(round(self.height * 1.125))
|
|
|
|
resized_img = img.resize((new_width, new_height), self.interpolation)
|
|
|
|
x_maxrange = new_width - self.width
|
|
|
|
y_maxrange = new_height - self.height
|
|
|
|
x1 = int(round(random.uniform(0, x_maxrange)))
|
|
|
|
y1 = int(round(random.uniform(0, y_maxrange)))
|
|
|
|
croped_img = resized_img.crop(
|
|
|
|
(x1, y1, x1 + self.width, y1 + self.height))
|
|
|
|
return croped_img
|
|
|
|
|
|
|
|
|
2018-10-18 19:04:28 +08:00
|
|
|
class RandomErasing(object):
|
|
|
|
""" Randomly selects a rectangle region in an image and erases its pixels.
|
|
|
|
'Random Erasing Data Augmentation' by Zhong et al.
|
|
|
|
See https://arxiv.org/pdf/1708.04896.pdf
|
|
|
|
Args:
|
|
|
|
probability: The probability that the Random Erasing operation will be performed.
|
|
|
|
sl: Minimum proportion of erased area against input image.
|
|
|
|
sh: Maximum proportion of erased area against input image.
|
|
|
|
r1: Minimum aspect ratio of erased area.
|
|
|
|
mean: Erasing value.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, probability=0.5, sl=0.02, sh=0.4, r1=0.3, mean=[0.4914, 0.4822, 0.4465]):
|
|
|
|
self.probability = probability
|
|
|
|
self.mean = mean
|
|
|
|
self.sl = sl
|
|
|
|
self.sh = sh
|
|
|
|
self.r1 = r1
|
|
|
|
|
|
|
|
def __call__(self, img):
|
|
|
|
|
|
|
|
if random.uniform(0, 1) > self.probability:
|
|
|
|
return img
|
|
|
|
|
|
|
|
for attempt in range(100):
|
|
|
|
area = img.size()[1] * img.size()[2]
|
|
|
|
|
|
|
|
target_area = random.uniform(self.sl, self.sh) * area
|
|
|
|
aspect_ratio = random.uniform(self.r1, 1 / self.r1)
|
|
|
|
|
|
|
|
h = int(round(math.sqrt(target_area * aspect_ratio)))
|
|
|
|
w = int(round(math.sqrt(target_area / aspect_ratio)))
|
|
|
|
|
|
|
|
if w < img.size()[2] and h < img.size()[1]:
|
|
|
|
x1 = random.randint(0, img.size()[1] - h)
|
|
|
|
y1 = random.randint(0, img.size()[2] - w)
|
|
|
|
if img.size()[0] == 3:
|
|
|
|
img[0, x1:x1 + h, y1:y1 + w] = self.mean[0]
|
|
|
|
img[1, x1:x1 + h, y1:y1 + w] = self.mean[1]
|
|
|
|
img[2, x1:x1 + h, y1:y1 + w] = self.mean[2]
|
|
|
|
else:
|
|
|
|
img[0, x1:x1 + h, y1:y1 + w] = self.mean[0]
|
|
|
|
return img
|
|
|
|
|
|
|
|
return img
|