2020-02-10 07:38:56 +08:00
|
|
|
# encoding: utf-8
|
|
|
|
"""
|
|
|
|
@author: liaoxingyu
|
|
|
|
@contact: sherlockliao01@gmail.com
|
|
|
|
"""
|
|
|
|
import copy
|
|
|
|
from collections import OrderedDict
|
|
|
|
|
2020-02-27 12:16:57 +08:00
|
|
|
import numpy as np
|
2020-04-27 14:51:39 +08:00
|
|
|
import torch
|
|
|
|
import torch.nn.functional as F
|
2020-02-10 07:38:56 +08:00
|
|
|
|
|
|
|
from .evaluator import DatasetEvaluator
|
|
|
|
from .rank import evaluate_rank
|
|
|
|
|
|
|
|
|
|
|
|
class ReidEvaluator(DatasetEvaluator):
|
2020-02-27 12:16:57 +08:00
|
|
|
def __init__(self, cfg, num_query, output_dir=None):
|
2020-02-10 07:38:56 +08:00
|
|
|
self._num_query = num_query
|
2020-02-27 12:16:57 +08:00
|
|
|
self._output_dir = output_dir
|
2020-02-10 22:13:04 +08:00
|
|
|
|
2020-02-10 07:38:56 +08:00
|
|
|
self.features = []
|
|
|
|
self.pids = []
|
|
|
|
self.camids = []
|
|
|
|
|
|
|
|
def reset(self):
|
|
|
|
self.features = []
|
|
|
|
self.pids = []
|
|
|
|
self.camids = []
|
|
|
|
|
|
|
|
def process(self, outputs):
|
2020-02-18 21:01:23 +08:00
|
|
|
self.features.append(outputs[0].cpu())
|
|
|
|
self.pids.extend(outputs[1].cpu().numpy())
|
|
|
|
self.camids.extend(outputs[2].cpu().numpy())
|
2020-02-10 07:38:56 +08:00
|
|
|
|
|
|
|
def evaluate(self):
|
|
|
|
features = torch.cat(self.features, dim=0)
|
2020-04-27 14:51:39 +08:00
|
|
|
# normalize feature
|
|
|
|
features = F.normalize(features, dim=1)
|
2020-02-10 07:38:56 +08:00
|
|
|
|
|
|
|
# query feature, person ids and camera ids
|
|
|
|
query_features = features[:self._num_query]
|
2020-02-27 12:16:57 +08:00
|
|
|
query_pids = np.asarray(self.pids[:self._num_query])
|
|
|
|
query_camids = np.asarray(self.camids[:self._num_query])
|
2020-02-10 07:38:56 +08:00
|
|
|
|
|
|
|
# gallery features, person ids and camera ids
|
|
|
|
gallery_features = features[self._num_query:]
|
2020-02-27 12:16:57 +08:00
|
|
|
gallery_pids = np.asarray(self.pids[self._num_query:])
|
|
|
|
gallery_camids = np.asarray(self.camids[self._num_query:])
|
2020-02-10 07:38:56 +08:00
|
|
|
|
|
|
|
self._results = OrderedDict()
|
|
|
|
|
|
|
|
cos_dist = torch.mm(query_features, gallery_features.t()).numpy()
|
2020-03-25 10:58:26 +08:00
|
|
|
cmc, mAP, mINP = evaluate_rank(1 - cos_dist, query_pids, gallery_pids, query_camids, gallery_camids)
|
2020-02-10 07:38:56 +08:00
|
|
|
for r in [1, 5, 10]:
|
|
|
|
self._results['Rank-{}'.format(r)] = cmc[r - 1]
|
|
|
|
self._results['mAP'] = mAP
|
2020-03-25 10:58:26 +08:00
|
|
|
self._results['mINP'] = mINP
|
2020-02-10 07:38:56 +08:00
|
|
|
|
|
|
|
return copy.deepcopy(self._results)
|