fast-reid/projects/FastClas/fastclas/bee_ant.py

51 lines
1.4 KiB
Python
Raw Normal View History

2021-01-18 11:36:38 +08:00
# encoding: utf-8
"""
@author: xingyu liao
@contact: sherlockliao01@gmail.com
"""
import glob
import os
from fastreid.data.datasets import DATASET_REGISTRY
from fastreid.data.datasets.bases import ImageDataset
2021-01-18 11:36:38 +08:00
__all__ = ["Hymenoptera"]
@DATASET_REGISTRY.register()
class Hymenoptera(ImageDataset):
"""This is a demo dataset for smoke test, you can refer to
https://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html
"""
dataset_dir = 'hymenoptera_data'
dataset_name = "hyt"
def __init__(self, root='datasets', **kwargs):
self.root = root
self.dataset_dir = os.path.join(self.root, self.dataset_dir)
train_dir = os.path.join(self.dataset_dir, "train")
val_dir = os.path.join(self.dataset_dir, "val")
required_files = [
self.dataset_dir,
train_dir,
val_dir,
]
self.check_before_run(required_files)
train = self.process_dir(train_dir)
val = self.process_dir(val_dir)
super().__init__(train, val, [], **kwargs)
def process_dir(self, data_dir):
data = []
all_dirs = [d.name for d in os.scandir(data_dir) if d.is_dir()]
for dir_name in all_dirs:
all_imgs = glob.glob(os.path.join(data_dir, dir_name, "*.jpg"))
for img_name in all_imgs:
data.append([img_name, dir_name, '0'])
2021-01-18 11:36:38 +08:00
return data